
Lecture Notes 
in Physics 
Edited by J. Ehlers, M~nchen K. Hepp, Z0rich 
R. Kippenhahn, M~Jnchen H.A. Weidenmeller, Heidelberg 
and J. Zittartz, Kbln 

155 
I III 

Quantum Optics 
Proceedings of the South African Summer School 
in Theoretical Physics. Held at Cathedral Peak, 
Natal Drakensberg, South Africa, January 19-30, 1981 

Edited by C.A. Engelbrecht 

Springer-Verlag 
Berlin Heidelberg New York 1982 



Editor 

C.A. Engelbrecht 
The Merensky Institute of Physics, University of Stel lenbosch 

Stel lenbosch 7600, South Afr ica 

ISBN 3-540-11498-X Springer-Verlag Berlin Heidelberg New York 

ISBN 0-387-11498-X Springer-Verlag New York Heidelberg Berlin 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, 
reproduction by photocopying machine or similar means, and storage in data banks. Under 
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is 
payable to "Verwertungsgesellschaft Wort", Munich. 

© by Springer-Verlag Berlin Heidelberg 1982 
Printed in Germany 
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 
2153/3140-543210 



TABLE OF CONTENTS 

H. Haken: 

THE THEORY OF LASERS AND LASER LIGHT I 

Introduction ................................ ............ 2 

Rate Equations ........................................... 8 

Semiclassical Theory .................................... 22 

The Quantum Theory of the Laser ......................... 30 

Classical and Quantum Theories of Coherence ............. 36 

Last Lecture ............................................ 48 

F. Casagrande, L.A. Lugiato: 

QUANTUM STATISTICAL TREATMENT OF OPEN SYSTEMS, 

LASER DYNAMICS AND OPTICAL BISTABILITY ..................... 53 

Introduction ............................................. 53 

Dynamics of Open Systems ................................ 55 

Two Simple Applications: the Decay of a Two-Level 

Atom and the Brownian Motion of a Harmonic Oscillator ..° 65 

The One-Mode Laser Model ............................ .... 73 

Semiclassical Treatment of Laser and Optical 

Bistabilitv ............................................. 79 

Quantum Statistical Treatment of Laser and 

Optical Bistability ..................................... 87 

A. Schenzle: 

NONLINEAR OPTICAL PHENOMENA AND FLUCTUATIONS ............... 103 

Introduction ............................................ 105 

Interaction of Field and Matter ......................... 107 

Nonlinear Optical Phenomena ............................. 123 

Fluctuations ............................................ 145 

Fluctuations in Nonlinear Optics ........................ 162 

Appendix A .............................................. 197 

Appendix B .................................. ............ 203 

J.D. Hey, F.A. Hopf: 

NON-LINEAR OPTICS .......................................... 211 

Introduction to Non-Linear Optics ....................... 213 

The Maxwell Equations ........................... ........ 215 

Electromagnetic Wave Propagation in a Linear 

Anisotropic Medium ...................................... 218 

Optical Harmonic Generation in a Non-Linear Medium ...... 225 



IV 

Phase Matching in Crystals ........ . ..................... 243 

Practical Applications .................................. 261 

Additional Non-Linear Optical Effects ................... 275 

Scattering by Non-Linear Media .......................... 287 

Appendix I: Macroscopic and Local Quadratic 

Susceptibilities in Anisotropic Crystals ................ 302 

Apppendix II: Crystal Classes Exhibiting 

Quadratic Susceptibility ................................ 306 

Appendix III: The Manley-Row Relations .................. 312 

Appendix IV: The Index Ellipsoid ........................ 319 



LECTURERS 

H Haken, Institut f~r Theoretische Physik, University of Stuttgart 

F A Hopf, Optical Sciences Center, University of Arizona, Tucson 

L A Lugiato, Institute di Fisica, University of Milano 

A Schenzle, Physics Department, University of Essen 

ORGANIZING COMMITTEE 

C A Engelbrecht (CHAIRMAN), University of Stellenbosch 

J J Henning, S Afr Atomic Energy Board, Pelindaba 

R H Lemmer, University of the Witwatersrand, Johannesburg 

T I Salamon, NPRL, CSIR, Pretoria 

T B Scheffler, University of Pretoria 

PARTICIPANTS 

D Bedford, University of Natal, Durban 

H K Bouwer, NPRL, CSIR, Pretoria 

J H Brink, S Afr Atomic Energy Board, Pelindaba 

J D Comins, University of the Witwatersrand, Johannesburg 

J A de Wet, Mount Marlow, P 0 Witmos 5825 

E F du Plooy, University of Stellenbosch 

E E Erasmus, University of Stellenbosch 

H Fiedeldey, University of South Africa, Pretoria 

W E Frahn, University of Cape Town 

M Gering, University of the Witwatersrand, Johannesburg 

H B Geyer, S Afr Atomic Energy Board, Pelindaba 

I Gledhill, University of Natal, Durban 

F J W Hahne, 

P J Harper, NPRL, CSIR, Pretoria 

W D Heiss, NRIMS, CSIR, Pretoria 

J D Hey, University of Cape Town 

E G Jones, NPRL, CSIR, Pretoria 

D P Joubert, University of Stellenbosch 

S P Klevansky, University of the Witwatersrand, Johannesburg 

F J Kok, University of Pretoria 

H U Kranold, S Afr Atomic Energy Board, Pelindaba 



Vi 

P Krumm, University of Natal, Durban 

P E Lourens, S Afr Atomic Energy Board, Pelindaba 

R E Raab, University of Natal, Pietermaritzburg 

D E Roberts, S Afr Atomic Energy Board, Pelindaba 

D Scbmieder, NPRL, CSIR, Pretoria 

P du T van der Merwe, S Afr Atomic Energy Board, Pelindaba 

W S Verwoerd, University of South Africa, Pretoria 

J du P Viljoen, S Aft Atomic Energy Board, Pelindaba 

H M von Bergmann, NPRL, CSIR, Pretoria 



PREFACE 

South Africa shares with other countries far from the North Atlantic 

scientific community the drawbacks of distance. In a very small 

number of fields the number of local physicists actively engaged in 

research is large enough to provide students and scientists with 

the opportunity to make contact with the conceptual framework and 

the latest developments. In most fields this is not the case. 

It was realized that a partial solution to this problem lies in the 

establishment of a school along the lines of a summer school, where 

the participants are immersed in a concentrated course on a specific 

topic with lectures delivered by a group of experts. During the 

seventies the theoretical physicists organized themselves and worked, 

through the South African Institute of Physics (SAIP), to achieve 

this goal. Success came at last when the Council for Scientific and 

Industrial Research (CSIR) agreed to provide the all-important 

financial support for this venture. 

A theme was sought as the topic of the first course which is of 

current interest and combines intriguing conceptual structures with 

useful applications. Besides meeting these specifications, the theory 

of quantum optics is also a field in which very little research has 

been done locally and which could thus profit much from the stimula- 

tion provided by such a course. 

The first school was held at the Cathedral Peak Hotel in the Natal 

Drakensberg from 19 to 30 January 1981. These lecture notes consist 

of the typed manuscripts as supplied by the authors, or, where nec- 

essary, prepared from notes taken by participants. They deal with re- 

lated aspects of quantum optics and present a very readable review 

of the current ideas in this field. 

I wouid like to use this opportunity to thank the SAIP for its support, 

the Cathedral Peak Hotel for the use of its facilities, the other mem- 

bers of the organizing committee for their assistance, and the parti- 

cipants for the enthusiasm with which they joined in the discussions. 

The CSIR bore the brunt of the financial burden and provided invalua- 

ble technical and organizational aid. The four lecturers from abroad 

presented us with inspired lectures, which will always be remembered. 

We would especially like to thank Hermann Haken, who also acted as un- 

official godfather with his advice on the organization of the course. 



VIII 

Finally, we are grateful to the editors of Lecture Notes in Physics 

for their willingness to publish these proceedings. 

C.A. Engelbrecht 
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I. INTRODUCTION 

These lectures treat the theory of the laser and the quantum theory of 

coherence. Most of the material can also be found in Haken (]966), 

(1979a, b) or (198l). 

Laser physics started in the microwave region. "Microwave Amplification 

by Stimulated Emission of Radiation" was abbreviated to MASER. In re- 

deriving Planck's radiation formula, Einstein (|917) postulated that the 

interaction between matter and light takes 3 forms: in addition to ab- 

sorption and spontaneous emission of photons occur. A photon impinging 

on an atom or molecule in an excited state can cause the atom to emit an 

additional photon, thereby transmitting its excitation energy to the light 

field. The stimulated photon is exactly in phase with the stimulating 

photon - they are described by exactly the same wave function. 

In order for stimulated emission to predominate over absorption, there must 

be more atoms in an upper than in a lower energy state. This condition - 

a so-called population inversion - can never hold in thermal equilibrium. 

In an ammonia molecule, the ground and first excited states (symmetric and 

antisymmetric with respect to the position of the nitrogen atom relative 

to the plane of hydrogen atoms) are very close together, but Well separated 

from other states. As AE ~ E 1 - E 0 << kT, both are equally populated at 

normal temperatures. By sending a beam of NH 3 molecules through an electric 

field, Gordon, Zeiger and Townes (1954) separated upper and lower energy 

molecules into separate beams. The upper state beam was then sent through 

a cavity with natural (mode) frequency tuned to be in resonance with the 

Bohr frequency AE/h. 

First, spontaneous decays will occur. As they are random, and independent 

of each other, they lead to unco-ordinated chaotic waves with random wave 

vectors and with the whole range of frequencies corresponding to the molecular 

natural linewidth. A spontaneously emitted (or stimulated) photon with a 

frequency and wave vector corresponding to a cavity mode will, however, 



probably traverse the cavity many times to and fro before escaping. It thus 

has a good chance to stimulate a molecule to emit a photon with an identical 

associated electromagnetic wave. Each of the resultant 2 photons may repeat 

the process, and so forth, so that initially this cascade of coherent photons 

(all with the same EM wave) will grow exponentially. This growth will be 

prolonged and lead to a strong coherent wave dominating all spontaneous 

emission, if the particular wave is a low loss cavity mode. 

The s p a c i n g  between c a v i t y  l i n e s  i s  u s u a l l y  s m a l l e r  t ha n  the  a tomic  l i n e w i d t h  

( e n v e l o p e ) ,  so t h a t  a m p l i f i c a t i o n  by s t i m u l a t e d  e m i s s i o n  may occur  on s e v e r a l  

cavity modes at the same time. However, in the completely homogeneous case, 

competition between modes for upper state atoms (more accurately - for inverted 

population) to "feed" on eliminates all but the strongest mode - a laser 

equivalent of "survival of the fittest. This can only happen in a ring laser, 

where I ~I&12~leikxI2 is independent of position. In other cases, the wave has 

nodes. No stimulated emission "eats" the population inversion at a node, where 

it can thus feed another mode which has an antinode at this position - a 

variety of environments permit "peaceful coexistence" of several modes. 

As cavity lifetimes T c may exceed natural lifetimes T n by many'orders of 

magnitude, the associated cavity linewidth(A~ c = ]/Tc)may be far sharper 

than the natural linewidth(A~ n = |/Tn). Nonlinear interactions in the laser 

can further reduce the remaining frequency spread by many orders of magnitude. 

Laser light can thus be highly monochromatic, with a spectral width of 10 6 

to ]0 I° times smaller than that of the best spectral lamp. 

In an essentially closed cavity, as is normally used in masers, the mode 

structure is three dimensional. Since ~ = kcdepends only on the magnitude 

of k, all modes which (in k-space) corresponding to a spherical shell of 

volume d3k = 4~k2dk are degenerate, within the same frequency range de = cdk. 



The number of modes is proportional to the volume in phase space 

V d3k V k2dk 4~Vp2dp 
dn = ~ = 2~ 2 = 

For a cubic cavity, with k/k kept constant (at say ]0-6), dn will increase 
_ kL 2L 

with the cube of the parameter n o = -~- = -][- . For a microwave laser this 

is no problem, as the wavelength and cavity dimensions are about 

the same, so that n is a small integer. In the optical region, n is 
o o 

typically 2 x 0,25 m - ]06 , so that about ]0 -6 . n 3 = ]012 modes will 
0,5 x 10-~m o 

compete. 

Sehawlow and Townes (1960) drastically reduced this number by using a cavity 

open in the Y and Z directions, so that the number of modes reduces to that 

of the one-dimensional case. In practice, one to a few hundred modes may 

compete. With such a cavity, Maiman (1960) obtained laser action in a ruby 

rod. As the ruby pump scheme is of type A below, it was not considered a 

likely candidate for successful laser action. Thus Phys. Rev. Letters 

rejected the first report of laser action, which then appeared in the 

New York Times after a press conference! 

When more than one mode appears with frequency inside the atomic (or molecular) 

line profile, "survival of the fittest" may assert itself, so that only the 

mode with the strongest gain (nearest the centre of the atomic line) will 

survive. 

The initial exponential growth of the coherent radiation cascade will slow 

down when the number of photons, and hence the number of stimulated emissions 

becomes so large that the population of excited state atoms is significantly 

depleted. (The number of lower state atoms simultaneously increases, which 

leads to absorption). The "gain" of the medium thereby decreases, and the 

exponential growth slows down and stops. (All this typically takes a 

few nanoseconds). A continuous steady output may be achieved if upper state 

atoms are continuously supplied, and lower state ones removed. In the 

ammonia maser this happens by a molecular beam passing through the cavity. 

In most lasers this is, however, achieved by an optical, electrical, chemical, 

gasdynamic or other "pump" mechanism which transfers a given atom or molecule 

from the lower to the upper state via one or more other quantum States. 

Sometimes, a pulsed laser output is desired. This may be achieved by a 

procedure called Q-switching or Q-spoiling: The Q value of the cavity is 



degraded (the cavity feedback mechanism spoiled) for a sufficient time to 

allow the "pump" procedures to build up a very high population inversion, 

storing a large amount of energy. During this period laser action cannot 

reduce the population inversion, as the positive feedback provided by to 

and fro reflections in the cavity is prevented by Q spoiling. One form of 

Q-switching is to rapidly rotate one cavity mirror, thereby preventing 

laser action except during the nanosecond or so when the mirrors are 

substantially parallel. During this brief period the laser cascade develops, 

as a so-called giant pulse that even in a tiny laser may reach a megawatt. 

In large neodymium-glass or CO 2 systems, many terawatts may be obtained. 

Passive Q-switching (~ithout mechanically moving part,may be achieved by 

inserting inside the cavity a saturable (bleachable) dye to prevent cavity 

feedback. When the population inversion exceeds a sufficiently high value, 

sufficient spontaneously emitted photons are absorbed in the dye to raise 

half the dye molecules to an upper state. In the dye, spontaneous emission 

now matches absorption, so that it becomes transparent to light at the laser 

frequency, and no longer spoils the cavity. The laser cascade develops in 

the next nanosecond in a giant pulse. 

Mode-locking, in which a nonlinear element (either in the laser medium 

itself, or in a separate cell) establishes a phase relation between different 

modes, yields a train of even briefer pulses (of picosecond or shorter duration) 

separated from each other by the laser round-trip time t = 2L/c. By selecting 

one pulse from such a train, and amplifying it by passing it once through 

a laser medium without mirrors, the highest intensities, as used for achieving 

fusion, can be reached. 

Wehave seen that laser light is extra-ordinarily monochromatic. Features 

such as coherence time t = ]/A~ and coherence length ~ = ct are related 
c c c 

to this, as is the possibility to focus laser light to a spot with a diameter 

of about a wavelength. High intensities are achievable with pulsed focused 

lasers (up to ]0 25 watt/m 2 on a small spot). The correspondingly strong 

electric fields can exceed that felt be an electron in the lowest Bohr orbit 

in hydrogen, and can hence "instantaneously" ionize atoms, even when the 

energy per photon is far less than the ionization energy. However, these 

properties do not uniquely characterize laser light. With interference 

filters, extremely narrowband (monochromatic) light can be prepared. And 

high intensities are not an essential feature of laser radiation, as typical 

helium-neon lasers deliver ] milliwatt of light. 



Laser light is, however, uniquely characterized by other coherence, or 

statistical properties. An example is the 2 photon correlation function, 

which is measured in a Hanbury Brown-Twiss experiment. To explain the essential 

difference between laser and other light, we consider a component of the 

electric field 
i~t 

E(xt) = E(t) sin kx e , 

and focus our attention on the comparatively slowly varying amplitude E = E(t) - 
i~t 

the rapid fluctuations being contained in the factor e Thermal light has a 

Gaussian distribution function exp [-(ALo.t)2], whereas light from an interference 

filter (or a laser below threshold) has a Lorentzian form I/[ l + (A~o.t~]. 

In all these cases the statistical distribution of the amplitude E 

is around a maximum and average at E = O. 

J 

Statistical distribution of the amplitude E, for (a) thermal (Gaussian) light; 

(b) light from a spectral source or interference filter (Lorentzian); and 

(c) light from a laser above threshold. 

As E may contain a slowly varying phase factor, it is complex. Hence a more 

correct representation would be obtained by rotating the diagram around 

the vertical axis, to generate a horizontal E plane. 

> 

E 



For a laser above threshold, the picture changes totally. The amplitude E 

is now well stabilized around a nonzero average value E . It shows 
o 

extremely small fluctuations around E due to quantum fluctuations (spontaneous 
o' 

emission) and interactions with the pumping and other "heatbath" variables which 

include a reservoir to which atoms can lose energy. There is an effective 

restoring force which maintains JE[ near E . The phase of E will however 
o 

execute a rondom walk, as it is not subject to any "restorlng" force". 

To see how this comes about, we give a classical interpretation to the 

Heisenberg equation 

= (G-K)E - CE 3 + F(t). 

Here G (which increases with increasing pump power) represents the gain to 

the light field due to stimulated emission, K the absorption due to cavity losses, 

C is positive, and F is the random complex fluctuations. This equation of 

motion is similar to that for the displacement q(t) of a particle with small 

mass m in damped motion subject to a potential V(q) = ½(G-K)q 2 + ¼ cq4 and 

rondomly fluctuating forces F (t) : 

~V 
mq + q = - + F(t). 

..7 / / 



The potential V(E) is sketched for the cases (a) far below threshold (G<<K), 

(b) still below, but nearer to threshold, and (c) above threshold (G > K). 

The phase of E is not represented in these two-dimonsional diagrams: a more 

correct, three-dimonsional diagram would be obtained by rotating the given ones 

about the vertical (V) axis. The other 2 axes would then represent the real and 

imaginary parts of E. The restoring force in the cases below threshold is 

towards E = O, and decreases as the gain increases towards threshold. Con- 

sequently the time-relaxations become slower, and the linewidth narrower. 

Above threshold these is a restoring force for IEI towards a value E o. 

Both E and the restoring force increase with increasing gain, i.e. as the 
o 

laser moves further above threshold. The phase of E experiences no restoring 

force in the rotationally symmetric well. 

The transition from below to above threshold resembles a phase transition. 

The system is self organizing in that stimulated emission (which is dominant 

above threshold) "synchronizes" the emissions of the individual atoms. 

2. RATE EQUATIONS 

Laser theory is a rich field and many questions can be asked: 

I. What is the laser condition? What is the intensity? 



2.1 

2. What is the time-behaviour of the electric field? In a laser we 

have a number of modes, each, say, with index %, with n% the number 

of photons in a mode %. Can modes exist together? Do they compete? 

All these questions can be answered by the so-called rate equations. 

The quantities we are working with therefore are n%, N ,2, (number 

of atoms in upper level), N , 1 (number in lower level). 

But we can improve on this description by also describing the system in terms 

of the light frequency and the phases. The semiclassical equations yield 

this description. 

The Laser condition 

This was first derived in a paper by Schawlow and Townes (2). That was the 

beginning of the rat race to make the first laser work. The condition is 

not so difficult. What we want to have is the process of stimulated 

emission dominating the whole process. 

We have a system of two level atoms and we have in the beginning all in the 

ground state. Then we excite the system from the outside. Now we look 

for the rate at which light is produced. We have first of all stimulated 

emission. Now we go back to Einstein, who in his 1917-paper has introduced 

the rate for stimulated emission. This rate is as follows. Let ~ have 

n photons (in a single mode). The intensity of this mode is proportional 

to the number of photons n in this mode. 

The rate of stimulated emission is proportional to N2nW , W ~ transition 

probability. To look what this probability means I remind you of spontaneous 

emission. The rate of spontaneous emission is proportional to N2W. Now 

we can relate W experimentally to the optical lifetime 

I 
W = --. 

T 
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This T means lifetime with respect to emission into all possible modes. 

The excited atom decays into the lower state and it may emit all sorts of 

radiation which is compatible with selection rules and with the energy 

conservation. However, in the laser case we are interested only in a 

speaific mode, because we have a cavity and we want to know what the transition 

rate is in the specific mode. We have therefore still to divide by p, 

the number of modes within the spontaneous linewidth A~ of the atom. How 

many modes are in the optical linewidth? 

8 ~ ~2A~V 
number of modes in the interval A~ 

p = c3 

1 
So W - ~p 

The virtue of the Schawlow-Townes calculation is that all quantities are 

experimentally known. 

We also have absorption. The absorption rate is NInW (the W is the same). 

Now we not finished, because we have a cavity and the photons may 

escape and the loss rate is proportional to the number of photons present and 

proportional to the inverse of the mean-lifetime t I ~ R  = reflectivity) (-)" 
The remaining losses are due to diffraction. Thus we finally obtain 

d n = (N 2 - N I) Wn - ~ 
dt t I 

We have neglected spontaneous decay and retained only the coherent parts. 

If spontaneous decay is included, we would get a term N2~ 

This term represents an 

dn ~ ~ ~ n ~  
incoherent contribution. 

correspond to 
coherent processes. 

Since spontaneous decay is so much smaller than stimulated emission, the 

dn > 0 reduces to laser condition ~-~ 
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n(N 2 - NI)W i n 
t I 

1 
i.e. (N 2 - NI)W >i ~I ~ ~ 0  

o r  N 2 - N 1 

V T S ~ 2 A ~ / c  3 t 
1 

If R = 90%, L = 30 cm,then t I = 10 -e seconds. In order to satisfy the 

laser condition A~ must be small and the frequency ~ should not be too big, 

also N 2 - N I must be high enough. For ~ = 1015 sec -I, c = 3 × 10 l°m/sec, 

T = I0 -s, AV = 101° , then 

which is a good figure. 

N 2 - N 1 
10 lo cm-a 

2.2 Pump schemes 

N~ 

N2 

Pumping takes place from 1 to 3. 

From 3 to 2 we then have recombination 

and the lasing action is between 2 and I. 

The disadvantage of this scheme is that more than 50% of the lower atoms 

must be excited before anything can be achieved. The ruby laser is an 

example using this scheme. Note for example that in the Ruby laser(A~203) 

the density of the doped chrome-ions Cr 3+ is I019 cm -3. Maiman did it with 

sufficient power. 

A better system is 

N s 
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where the pumping is from I to 3 and the lasing is from 3 to 2, provided of 

course that the recombination rate from 2 to l is big enough. Lastly one 

gets (in a 4 level system) a combination of these: 

4 ~ ,; 

III Jb,o o  
m II1 I 

Neodymium glasses. 

You pump to several levels 4. 

"~ radiationless (collisions) f 

2.3 

These are the pump schemes you can have in principle. You can realise 

these pump schemes by many solids, gases, etc. 

Matter equations 

For simplicity we take one kind of photon only (one mode) and two-level 

systems of atoms, where all atoms are equivalent. The creation rate for 

photons is given by the field equation 

an 
dt - NzW + (N - N )nW - 2kn (1) 

2 I 

where the term N2W due to spontaneous emission will be neglected and where 
l 

2k E ~, is the cavity loss probability. 

Now, if we introduce a transition rate W21[from l ~ 2, determined by the 

external pump] and a rate W21 determined by radiationless processes like 

collisions as well as by spontaneous emission, we obtain for the atoms the two 

equations 

dN z 
- -NW dt (N2 NI)nW + NIW21 2 12 

dN 
I W + 

dt - (N2 - N1)nW - NI zl N2W12 

The total number of atoms N = N I 

N - N = D 
2 I 

+ N 2 is constant, whereas the difference 

satisfies the equation 

D - D 
dD o 

- - -  2DWn (2) 
dt T 
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where the constants are defined by 

! 
y = W12 + Wzl 

W12 - W21 
D = N 
o Wlz + W21 

Equation(2) says that if 2DWn is neglected (photon number = O, no optical 

processes) then D will relax to D at a rate determined by the time constant T 
o 

D 

% 
/ 

,t 

2.4 

Relaxation of the population difference D in the case of 
,, ¢oh~'e~t 
noAoptical processes"~ n = 0. 

Steady state 

Let us look at the steady state case of (|) and (2). 

the inversion is given by 

In the steady state 

2k 
D =-~-, n=#0 

dD 
and from-z- = 0 we obtain 

at 

D 
o 

D 
I+2TWn 

So in the steady state, the inversion is (naturally) lower than in the 

unsaturated case. The solution for n in the steady state is 

WD - 21( 
o 
4~TW 

n (3) 
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J 

,~ D o 

P h o t o n  n u m b e r  a s  f u n c t i o n  o f  p u m p - r a t e  ~ D 
O 

Do contains the pump rate, ~ D o ~ Wzl - W12. Now we see there is a critical 

pump rate D . As the pumping increases, at first a certain amount of 
c 

pump-energy is eaten up by incoherent processes and then any surplus pump 

energy we provide the system with, is converted into the laser light. 

There is a problem with rate equations. The photon number n has to be 

nonnegative even if the laser condition 

2.5 

WD > 2~ 
O 

is not fulfulled. 

The adiabatic approximation 

We assume that D relaxes very quickly in the two equations 

= DWn - 2kn (4) 

D - D 
o T 2DWn (5) 

Then D ~ 0 and 

D 
o 

D - |+2TWn ' (6) 

the value of D to which it relaxes. For a small photon number, i.e. not too 

far above threshold 

D = Do(|-2TWn). 
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Substitution into (4) gives 

dn _ (WD ° ~ 2M)n - Cn 2 
dt 

The stationary solution n is known to us. Let us assume n is small - then 
s 

we have an exponential increase of n. If n is large it starts decreasing 

and reaches the stationary value n . 
S 

>t 

If you have a large deviation then you cannot use this approach. 

A possible appreach then is one of linearization: 

n = n 
S 

+ 6n, 6n = a e at 

D=D + ~D 
s 

We obtain two linear equations for ~n, ~D and obtain from the determinant = 0 

condition some value 

= -F + i~. 

Usually F • O, which means that the system is stable. The i~ does not 

appear in 2-1evel systems, only in three level systems. The relaxation 

oscillates in 3-1evel systems. Sometimes F negative is observed - then the 

rate equations are too restrictive - we then need phases too. 

2.6 The giant pulse (Q switch) 

The rate equations can be used in a semi-stationary way to describe the 

functioning of the Q-switch. With mirrors not aligned, or the dye not 
D 

yet bleached, n = 0 and the equation D - o yields D = D . Here we have 
I+2TWn o 

a very high inversion D = D . When the mirrors are aligned, or the dye gets 
O 

dn 
bleached, ~-{and n increases (initially exponentially) according to 
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2.7 

dn _ (WD ° - 2~)n - Cn 2 
dt 

and D decreases according to (6). The resulting behaviour is illustrated 

below. 

D 

Approximate behaviour of D and n for Q-switch according to 

rate equations. 

Multilevel atoms 

Now we consider three levels, with 3 ~ 2 the lasing transition. 

With just one kind of photon (single-mode case) the photon rate equation is 

dn 
d--t = (N 3 - N2)Wn - 2~n 
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whereas the matter equations become 

dN 3 
dt - (N3 - N2)Wn + W31Nz + W32N2 - N3(W23 + W ) 

dN z 
- - +W N -W N -W N dt -(N2 N3)Wn + W21NI 23 3 12 2 32 2 

dN I 
d"-"~ = - N l ( W 3 1  + W ) +  N W + N W 

21 2 12 3 13 

In reality some terms are always small or zero. For example in the 3-1evel 

systems above, W13 = 0 because the pumping conditions just do not cause a 

transition 3 -+ 1 and W = 0 due to the same reason. 
32 

Also W21 = 0 and W13 = 0. Under these conditions the system simplifies to 

an 
d-~ = (N3 - N2)Wn - 2Mn 

dN 3 
=- - N -W N dt (N3 Nz)Wn + W31 I 23 3 

dN 2 
dt - (N2 - N3)Wn + W21Nz + W23N3 - WI2N2 

dN I 
+NW dt = -NtW31 2 z2 

If the pump rates W n ,W21 are much smaller than the decay rates W23 and W12 , 

most of the atoms are in their ground states, and N I ~ N. Then 

dN 3 
dt = W31N - W23N3- W(N3 - N2)n 

dN 2 
dt - W21N + W23N3 - WI2N2 + W(N3 - N2)n 

~W21N - Wz2N2 + W(N 3 - N2)n 

where we have also neglected W23N 3. Without laser action N 3 

arrive independently at their equilibrium values 

and N will 
2 
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N z = W3---!-I N and 
Wz 3 

N 2 = W~I 
W12 

respectively. 

2.8 Multimode cases 

We know that a number of modes fit under the atomic line profile - see 

the diagram'off pag~ 2~ We assume that each of these modes can be occupied 

by a number of photons - n X for mode %. Now we also want to extend the 

approach with respect to the atoms: /ato,~ F o~ positlo- ~ 
. . . . .  • 

We distinguish these atoms by the label ~, and let x be the position within 

the cavity. 

The field equation, for the number of photons in mode % (ignoring spontaneous 

emission) is 

dn% 

d---~ - = n% ~W% d -2Kkn X (7) 

dn 
which replaces ~ = DWn - 2Kn. 

The matter equation for atom ~ describes the "local inversion" 

d~a = N2I a - NI~ = p22~- pl11.1 = lal ~ - Ibl ~ (8) 

where @(t) = a(t)@ U + b(t)eL, with 6 U and @ L the upper and lower state atomic 

wave functions for atom ~. The matter equation is 

dd d -d 

dt ~ - o T ~ ~2n~W% d 

d - d 
to replace dD o ~ 2WDn. 

dt T 

The rate coefficient for stimulated emission is 

(9) 
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2y~ 

W~ = 2 + ¥~ (~ _ ~x )e g~2 I I (lo) 

with g~% = ie < Cu I~ICL>~" !~ uz(~v). (-~)= (II) 

Here iX and u% are the mode polarization and wavefunction. 

Very interesting consequences follow from the multimode formulation. Firstly 

we consider mode competition, and prove that only certain modes can survive. 

2.8.1. Mode selection in the completely homogeneous case 

Where the laser active atoms are inbedded in a matrix (as the Cr ++ in A%203 

for ruby, or the Nd +3 in glass), individual atoms at non-equivalent sites may 

suffer different degrees of shifting or individual broadening of the lasing 

transition. In (19), v and/or y~ would then differ from atom to atom. In 

a gas discharge, different atoms have different Doppler shifts, so that their 

line centres ~ differ. Such processes lead to inhomogeneous broadening of 

a spectral transition. In a laser, yet another, additional, source of 

inhomogeneity may arise: near the nodes of the field g% for a given node, the 

probability for stimulated emission (and absorption) is much less than 

elsewhere, so that different spatial positions x are not equivalent. 

In the completely homogeneous case, all laser-active atoms are equivalent 

with respect to the lasing transition: W%~ of (10) must be the same for all 
ikx 

atoms. This can only happen in a ring laser where ~% = EoUx(x ) = Eoe 

so that the intensity Igl 2 is the same for all atoms. 

In such a case 

W%~ = W~, ~ d = D, 

and for a steady state (nx = 0), equation (7) yields that 

(DW% - 2kX) = 0. 

It follows that for all modes which partake in the laser action (i.e., for 

which n X ~ W% 0), the ratio K of gain to loss must be the same (= 2/D). What 

happens is that only the s~rongest mode (or degenerate modes) in terms of 
W% 
K-~Will survive in a completely homogeneous case. In terms of the diagram 

on page 2 for an optical laser (where K% is the same for neighbouring 
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longitudinal modes), this means the mode corresponding to the spike nearest 

the peak of the atomic transition. 

2.8.2 Coexistence of modes due to spatial inhomogeneities 

In a steady (d = O) state, (9) gives that 

d 
o 

d = I+2T~%Wx ~ ~ do(l-mT ~ n~W~). (12) 

When the frequency dependence of W%~ (the spectral line profile) is homogeneous, 

the spatial dependence 

W% ~ IU%(x )I 2 = Isin k%x I 2 

implies [by (12)] a corresponding variation in the local population inversion. 

As explained below the diagram on page 2, these spatial inhomogeneities 

(spatial hole burning) of the mode functions for standing waves, provide a 

"variety of habits" which permit the coexistence of several longitudinal 

mode "species". 

~pati~l h~le b~i. 3 L.to t~e ~veYsio. 

2.8.3 The Lamb dip: holes in a Doppler or other inhomogeneously broadened line 

In gas lasers, the effects of inhomogeneous Doppler broadening of the spectral 

line profile imply that in (10), the line centre ~% for an individual atom 

depends on the velocity v of the atom. If we consider (12) for a single 

mode, this implies the burning of a hole corresponding to the mode frequency 

into the inhomogeneously broadened atomic spectral profile (the envelope on 

page 2) - the so-called Lamb dip. 
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W~ 

The original inversion (outer curve) has the shape of the atomic spectral 

profile. Lasing on the mode ~% removes from the inverted state atoms with 

frequencies ~ within a distance yp from the mode frequency profile, to 

yield the inner curve. 
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3. SEMICLASSICAL THEORY 

The Maxwell equations for a dielectric with polarization P and con- 

ductivity ~ are: 

curiE = -~ B j = oE 

47 l ~) H= B curlH = -~- j + c-- 

D = E + 47P divE = 0 

By eliminating H we obtain 

(V2 __[12) ~ 4~ (TE + 4~ 

C C 

( 1 3 )  

under the assumption that div P = 0. For a discussion of the atoms we 

consider the interaction of the electromagnetic field E with a single 

atom. The interaction energy is H p = e~-E(xll,t)land the total hamil- 

tonian is 

H = H O + H p ~=_ ~-X~ 

with H representing the unperturbed atom. 
O 

We want to reduce the problem to a two-level problem. 

states o I , ~2 be known eigenstates of Ho: 

Ho~ = he#(!) 

-iet -ie2t 
1 

~(~, t) = cle ~i(~) + c 2 e ~2(!) 

Let 6 2 - 61E ~. 

It is then easily shown that the Schrodinger equation 

H~ = ih ~-~ 
~t 

Let the two 

is equivalent to 
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"i E(t )e -i~t i h c (t) _ ,x -01z'C2(t) 

i h &2(t) = E(t,x)e+i~t'02l cl(t ) 

) (13a) 

where 0.. = _,~ <*ile~l*j >" 

The states ~i and ~j normally possess definite parity, in which 

case 0.. = 0 and the polarization ~ = <@le~l$> for atom U reduces to 
--ii 

, -ivt i~t 
p~ = ~ 1 2 c l c 2 e  + 0 c l c  ~ e --21 ) 

i.e. pu = ~ % + ~0 = ~ 0 + c.c. (14) 
U-12 U-21 U-iz 

c~cze -iVt • where ~ is a density matrix element 021 in Heisenberg 

form. 

From (13a) and (|4), both ~ and the atomic polarization (and hence 

the light field) are zero when the atom is in either the upper or 

the lower state. Absorption and stimulated emission only takes place 

when both c I and c2, and hence the polarization and ~, are nonzero. 

From (13a), the field equation (for ~ ) is 

• i (15) 

where d D = Ic21 z - Icll z is the population inversion for atom ~. 

The matter equations are 

d -d 
2i _ o ~ (16) ~ =-~E(~)'(012~ e.c.) + --~ 

The first term follows from (|3a). It describes the interaction of 

the inversion d with the field ~ , i.e. absorption and stimulated 

emission, the last term describes incoherent (pump and relaxation) 

processes. For a homogeneous medium, the index ~ may of course be 

dropped. 
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We write the total polarization as a sum over the atomic contributions 

P(x,t) = ~ ~(x-~)~ - 

3.1. Mode decomposition 

The modes have been treated elsewhere-- in the lecture by D.J. Brink. 

We assume a complete orthonormal set of modes satisfying 

(V 2 + k~)~%(x) = 0 and appropriate boundary conditions on the mirrors, 

and exp nd the field in terms of these modes: 

E(_x,t) = ~ E%(t)_Ux(x), m)t = k%c, 

and similarly for P(x,t). 

The equation (13) for E then becomes 

Wl E% + E% + ~ 4~%~E~ = - 4~Zu_% _ (x)'p~_ (17) 

where o%%, = (u%,ou%,) ~ ~X%~% if o does not vary rapidly over the 

mode volume (laser cavity). In the mode picture, (15) and (16) become 

and 

i (18) ~ (-i~ - y)~ + ~ d ~ Ex(t)~(x).@21 
% 

d - d  
= o ~+2i 

d~ T -h-(~i2~D-c'c')" ZE~t)U~(x ) (19) 
X A -^ -~ 

d o - d  v + 2_p~ . ~ Et~% (~V) 
T ~ (19a) 

3.2. The slowly varying amplitude and rotating wave approximations 

We illustrate these approximations for the mode picture of the previous 

section [they may also be directly applied to the original E(xt) and 

P(xt)]. The fast variations, at the mode (laser) frequency w%, which 

(see p2) is very close to the atomic (Bohr) frequency ~ , is factored 

out in the slowly varying amplitude approximation. Hence the amplitudes 
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~± ~± E and will vary slowly compared to e ±i~t and e ±i~t, so that, when 

differentiating, ~ and p are neglected conpared to ~E and ~ in this 

approximation: 

El(t) = e-i~l t E l~+(t) + e+i~l t E~(t)~ Z E~(t) + E~(t) = E%+ + C.C. (20a) 

e-i9it~+., ei~ t .... + + ~(t) = p~it) + ~ ~tt) z p_~(t) + pZ(t) = ~ + c.c. ... (20b) 

With the positive and negative frequency parts E; and p+ thus 

separated [by (14), we may set 

4- 
p~Ct) = ~ 0 and ~*~21 ] , --12 ~(t) = 

the essence of the rotating wave approximation is to keep, in a product 

such as 

El(t) pga(t) = (E + + E-)(p + + p-) = E+p + + E-p- + E+p - + E-p + 

~zi~t 
only slow|y varying term such as E+p - and E-p +. The other terms -- e 

oscillate at twice the Bohr (and laser) frequency, will rapidly average to 

almost zero over any short time covering many Bohr (optical) periods. Products 

similar to (19d) occur in most basic equations, such as (18),(]9) and (19a) 

above. 

. . .  ( 2 1 )  

3.3 Dimensionless quantities b I. 

4- 
Let E%(t) = i (2V~-~%)"b I , E~(t) = -i %/(27rhw%)b~ . . .  ( 2 2 )  

With this definition, and the slowly varying amplitude and rotating wave 

approximations, the basic equations (17)-(19) become 

bl = (-i~ l - kl)b I - i ~ g~% ~ .,. (23) 

~ = (-iv-~)~ + I g~Ibld~ 

d - d 
~ _ ~ °  ~ + 2i(~l g~l ~' ~ bE - c.e.) 

... (24) 

... (25) 
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The first describes variations in the field; the last 2 are the matter 

equations. Here an effective conductivity ~, related to K% was used to 

incorporate both material and cavity losses. The term ~ and the term 

d - d 
o n 

also describe incoherent relaxation processes. 
T 

3.4 Single mode operation 

With a homogeneously broadened spectral line, and single mode operation (see 

§ 2.8.1), the equations (22) simplify: indices % disappear, and ~ * ~. 

For a steady state, d = 0. 

The ansatz of a coherent field coherently interacting with the atoms 

-i~t b = Be -i~t , ~ = ABe ... (26) 

with B, A and ~ constant, leads to 

A (-i~ + i~ +y) = ig~%Bd , 
ig~%d B X (24a) 

A = i(~-~) + y "'" 

d - d d o - d~ 
0 - o________~ + 2i(g*AB* - c.c.) - -  - 2d [B[2Wx~ ... (25a) 

T T 

2y 
with W%B = [gB%[2 (~_~)2 + y2 ... (27) 

We set the dimensionless quantity 

[bx[e ~ [b[ 2 = ]B[ e = n . . . .  (27a) 

Then n is proportional to the intensity I IE+[ 2 Then we have 

d -d 
0 o B - 2dn T WXB 

and, from (26) into (23): 

B(-i~ + i~ - K) = B Z[g ] y - i(~-~) ~% 2d~ (~)_~)z + yz 
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This implies that either B = 0 (mode not lasing) or the dispersion relation 

obtained by cancelling B. Real and imaginary parts give (see (27)). 

2K = ~ and 2(~ - ~) = -~ (~-~) - 2~ .(~-~) 

which gives ~ - ~K + ~y - VT2 + ~tl ... (27a) 
< + y T 2 + t 1 

1 1 
in terms of the cavity lifetime t I = ~-~ and natural lifetime T z - 2y" 

3.5 Recovering the rate equations 

By averaging over phases, we now rederive the rate equations. 

we substitute for ~ from (26) and (24a): 

Into (23 

d b% b% d 

dt = ~-i~ - ~%)b% - i~,%, g~%g~%'i~ - ~%,) + y 

db,~ bd~ 
~ + b% d~(b%b~) We From this equation we may calculate -~- b% dt " 

also use the fact that the phase average (see also (27a)) 

i.e. that the phases of different modes are independent (as mode frequencies 

differ and - in the absence of mode-locking - are no~ cormnensurable). 

Then it follows directly that the photon rate equation is 

dn% 
d (b E b% ) -2K~n% d--t dt + ~ nxW% d , 

as given earlier. 

3.6 Adiabatic elimination. The nonlinear laser equation. 

In order to investigate the time dependent nonlinear behaviour of the light 

field, we eliminated the matter variables from (23) - (25) according to the 

following scheme, which we illustrate for a 

3.6.] Single mode resonant two-level case with homogeneous broadening. 

As in § 3.4, indices % disappear, and ~ + ~. As a first step in our iteration, 
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we take d = d (the value without coherent optical processes), and on resonance 
o 

(V ~ ~) we self-consistently put 

-i~t 
b=Be 

in (24), which becomes a linear first order differential equation, with 

solution 

- i~t 
~(])~ = ig~doBe /y. 

Inserting this into (25), another linear d.e . is obtained, with solution 

d (I) = do[ 1 21y]. - 4TJguB j 

Re-substituting this improved inversion into (24), we obtain an improved dipole 

moment 

(2) i 
~ = ~ gu d o b(t)[l-4rJg bJ2/y] . . . .  (a28) 

We now substitute this into (23) to eliminate the matter variable, and obtain 

a self-consistent equation for the field alone: 

geNd 4NTdog4 
= (-ii-K)b + o b - JbJeb, (28) 

¥ ----7--- "" 

N 
as with a homogeneously broadened transition, ~ 2 = Ng 2 with N atoms gu 

present. With 

G = g2Ndo/Y , C = 4NTdog4/y2 ~ 

we are below threshold (see p ) if G < K; and above threshold (coherent 

processes predominating when the "gain coefficient" G exceeds the loss 

coefficient K. 

-imt . 
Substitute b = Be into (28), then 

K = G- CJbJ 2. 

G-K 
The nonlinearity of (28) enables us to find the photon number n = T for a 

given pump rate (which implies a given unsatured inversion d and a given gain 
o 

coefficient). Without the nonlinear term, no steady state would be possible 



above or below threshold (for G ~ ~). 

3.6.2 
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Effect of detuning the mode from the atomic line centre (~ ~ ~%). 

In the most general (multimode, off-resonance, but still steady state) case, 

the above elimination procedure is modified by starting with 

b% = Ble-i~%t, d = do . 

Equations (a28) and (28) are replaced by lengthy ones [involving summations 

over 3 different % indices in the nonlinear (cubic) term] - see e.g. Haken 

(1970a) or p229 of Haken (1970b). 

In the single mode inhomogeneously broadened case, we find, in addition to 

the above results, that a hole is burned into the gain profile, as in §2.8.3. 

Also, one finds a frequency shift 

- ~ = (A~)U + n(h~) s 

away from the cavity frequency. The first contribution is just the dispersion 

due to the atomic transition. The other contribution is proportional to the 

number of photons (light intensity) and describes the change of the dispersion 

du to the adjustment of the atomic occupation to the intensity of the light 

field. 

3.6.3 Multimode case. Frequency and phase (mode) locking 

With 2 modes, we find in addition to the above dispersion effects, a mutual 

influence of the individual mode dispersions on each other. As expected, 

two holes are burned into the inhomogeneous gain profile or atomic inversion 

spectrum. These influence each other when ~i - ~2 ~< Y" 

In the multimode case, for an inhomogeneously broadened laser transition, an 

important phenomenon occurs at very high inversion (Q switch), or when the 

cavity is so tuned that the frequency spacing ~%+I - ~% between adjacent pairs 

of modes become nearly the same: As the inversion is increased, or the 

tuning improved, the frequencies suddenly jump to values where the spacings 

A~ are all equal. The nonlinearity also establishes a phase relation 

between the modes, which therefore beat, and produce a train of ultrashort 

light pulses. 
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The interval from one pulse to the next is T = l~ ! 2L A~ A--~ = -~ -, the "round trip" 

time for light to traverse the cavity forth and back. If n modes (all 

under the gain profile) are thus phase locked together, the duration of a 

Nd +3 pulse becomes T/n - less than 10 -12 secOnds in a glass laser. 

4. THE QUANTUM THEORY OF THE LASER 

This is the most complete theory 'of the laser, and can yield all the results 

of the semiclassical theory (and therefore also of the rate equations). In 

addition, it gives the effect of fluctuations (noise) due to spontaneous 

emussion, and of fluctuations due to interactions with the pump and other 

heatbath variables [lossy cavity and all incoherent (spontaneous) processes - 

see diagram below]. 

As is well known (and evident from equation (23)), when the electro-magnetic 

field in a cavity is decomposed into modes (as was done in the semiclassical 

theory), then the mode amplitudes E%(t) and b%(t) behave as harmonic oscillators 

In the fully quantum mechanical treatment, these field oscillators must now 

be quantized. The dimensionless complex amplitudes (positive and negative 

frequency parts) b% and b% now are replaced by nonhermitian boson (in the 

present case, photon) operators b% and b~,~sat isfy commutation re la t ions l  

[b%,b%,] = [b~, b~,] = 0, [b%,b~,] = 6%%,|. (30) 

The number operator n% = b~b represents the number of photons in mode %. 

Matter equations. The atom p is again described in terms of eigenfunctions 

~i of the atomic hamiltonian: with H i = h~i = hEi~i 

~(~) = al~l(~) , +~2(~) ~ = x - x . _ , _ -jj 

The a. describe electrons, and may be regarded as fermion operators, ip 
satisfying anticomanutation relations 

¢ 

{aip, ajp,} = {a~p, aj~,} = 0, {aip , a~} = ~ij 6 , (31) 

We now illustrate schematically the interactions relevant for a laser: 
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( t I 

+ 

The hamilt~nian for this scheme is 

H = Hfiel d + Hatom s 

H 
system 

+ Hfield_atom s + H . . + H . • fleld-reservolr atoms-reservoir 
J 

+ 
' = E h e .  # where Hfiel  d = hmb b } Hatom s ~,J j ( a j~  aj~ + h .c . )  } 

and Hfield_atom s N g~ h(b~a + h.c.). 

There are several equivalent ways to introduce the field-reservoir 

interaction. We shall use the Heisenberg picture, as this makes the physics 

clear. Then 

t 

(32) 

(33) 

is again, as in (;4), a Heisenberg density matrix element. 

equation 

The Heisenberg 

dA 
d-T = A,H] 

used successively for A = b, ~ and d 

b = i00b - i~g ~ 

~ = i~ ~ + ibg d 

d~ = 2ig~(~ b t - h.c.) 

give (~ ~ e2~ - e1~ ) 

(34) 

(35) 

(36) 
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So far we have included Hfiel d + Hatom s + Hfield_atom s the interactions 

with the heatbaths (reservoirs) would give additional terms, and make these 

equations more similar to (23) - (25), and also introduce statistical fluctuations 

(noise). 

In order to incorporate pumping and damping terms into these, let us first 

consider the interaction of the field modes with a heat bath, according to the 

following model Hamiltonian with a bi-boson interaction 

H = h~0o b %b + ~ h~0B~B + ~ G0~ bB% + Z G~ b % B0 

(Remark: Our system is sufficiently large so that the Poincar~ recurrence time 

is so large that it does not matter ) 

The equations of motion for this sub-system are 

=-~o b - I~ G B 

B = -i~B - i G ~ b 

and the time-integrated form of the last equation is 

BLo(t) B " " -i~ot t • = 0~o#e - i ~o e-Z~°(t-T)G~(T)b(T)dT " 

The idea is to eliminate the reservoir coordinates Be(t) because they are not 

of interest: 

t 
- Z ] dTIG~I z e-i~(t-T)b(T) b =-imob ~ 

o 

-i ~ GooBw(o ) e -i~°t (37) 

For a broad spectrum of the reservoir the sum 

~OZ e-i~(t-T) igo [ z 

can be approximated by 2 ~ ~(t-T) with the result that (57) assumes the form 

b(t) = -i~0 b - <b(t) + F(t) 
O 
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The operator F(t) varies in a fluctuating manner, since we can consider B (o) 

as an element of an ensemble. Classically this term will be absent, b - (-i~o-<)b , 

but then we find that the cormnutation relations, assumed valid for t=0, are not 

satisfied for all times. In order to remedy this, it is therefore necessary 

to modify the damping equation with the term F(t). 

The operator F(t) has the following properties 

<F(t)> = 0 

<F+(t) F(t')> : 6(t - t')2kn . 

This result is another statement of the so-called fluctuation dissipation 

theorem. A The expectation ~alues are defined in terms of, say, a thermal 

distribution with temperature T: 

< ~ > = tr(p~) = 

< F(t)F+(t ') > = 

mZ<mlel m > e -mh~/KT 

2<(E + | ) 6 ( t  - t ' ) ,  

If we should now modify our five equations with dissipative and pumping terms 

similar to those just derived, we obtain 

= i~b - ig~ - Kb + F(t) (38) 

~ = i~ a H + ibgd H - ya + £ (t) 

d~ 2ig(~pbt bd~) do - dH = " + T + F~Id(t) 

(39) 

(40) 

The analogy with semiclassical equations has a nice feature. We have 

learnt lessons there, among other things the process of adiabatic elimination. 

We want to solve the quantum mechanical nonlinear stochastic equations. 

[Remark: Should we average over the heat bath A we would have obtained 

= > = O, < F ,d> = O, < F > O, < F 

and this would amount to the transition to the semiclassieal case.] 

As in the semiclassical approach, adiabatic elimination would lead to 

= (-i~ + g2D - <)b - C ~bb + F 
¥ total 

(4~) 
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where C = 492 FDQ D = Nd 
y2 ' o o 

and Ftota I = F(t) - ig ZF 
Y ~ ° 

The light field is driven by two noise sources (1) firstly the loss-mechanism 

due to the mirrors and other causes, (2) secondly due to fluctuations in the 

dipole moments, or noise due to the atoms (spantaneous emission). 

The fact that the quantum mechanical average < Ftotal > is zero, helps us to 

interpret (41) as a classical equation. 

Firstly, let 

-i~0t 
b qe 

Then the classical variable q will satisfy 

imt 
= Gq - Cq 3 + Ftote 

g~D ° 
The constant G = -- - K ~ G' - K is called the nett gain. Eq (42) is a 

nonlinear stochastic equation, and a simple mechanical interpretation makes 

life much easier. Rewrite (42) as an equation of motion 

(42) 

~V i~t (43) 
mq + q = - ~-~ + Ftote 

for a particle with a verY small mass m and with a potential 

V = ½Gq 2 + ¼Cq 4 

There are two cases of interest, namely G > 0 and G < 0~ 

The case when G < 0 is called the case below threhold, whereas the case G > 0 

is called the case above threshold. A simple graphical representation of V(q) 

(see pages 6-7) will greatly help us in understanding the nature of these two 

cases and will replace a complicated stability analysis. 

When V(q) becomes smaller, the amplitude of q becomes bigger. These then 

become "critical fluctuations". (We do not take G = 0 exactly and the q4-part 

of the potential has not been taken into account). 
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q, 

_.~ 
° .  

The position of the 'particle as a function of time moving under the influence 

of the fluctuating forces (a random superposition of decaying wave tracts). 

If G increases (becomes closer to zero) the damping is smaller - see the dotted 

curve. The slower decaying wave implies that we have a smaller linewidth. 

For positive G we have the behaviour sketched on p.7. 

-~ 
b(t) = qe 

= (r ° + p(t))e i~(t) e -i~t (44) 

We have, in (44), taken the quantity q not as a real quantity, but as a complex 

quantity with a phase ~(t). Both 0 and ~ are stochastic variables. The 

stochastic force causes the particle to oscillate radially. There is no 

restoring force for the motion in the @-direction. This implies a broken 

symmetry. 

Above threshold we have an average field bo, but below threshold we have no 

average field, just chaotic light. We shall later treat the case G = 0 when 

we introduce the Fokker-Planck equation in stead of the Langevin equations. 

Below threshold 

= Gb +F 
tot 

= -IGlb + 
tot 

where the cubic terms have been neglected. The formal solution of (45) is 

(45) 

b(t) = fo t e-IGl (t-T)F~tot(T)dT + b(o)e -IGIt (46) 
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In order to obtain information from (46) we shall use it in the calculation 

of correlation functions in a later stage. To complete the analysis, we now 

also solve for the Langevin equation above threshold. Substitute 

q(t) = (r ° +j°(e)) i+(~) into (42): 

• + e i~t (r ° + p)iSe i# = -$ei#+ G(r ° + p)e i~ - (r ° + p)3ei~ Fto t 

or 

i~t -i¢(t) 
(r ° + p)i~ + p = G(ro + p) _ C(ro + p) 3 + Ftot e e 

For large G we have 

$ = ~ Im Fto t e iwt e -i~(t) 
O 

= % - C r ;  + - + ReFto t 

or, if p = 0, r 2 = 
o C 

Now r 2 is related to the photon-number-density. 
o 

If G grows, r 2 grows, but simultaneously $ becomes smaller, and we have a 
o 

smaller linewidth because the more constant ~(t) is, the sharper is the linewidth. 

The time to go around the V-avis is l/linewidth. The fluctuating ~ actually 

gives rise to the linewidth. To summarise: Above threshold G > 0, r ° exists 

and as G grows the sharper the linewidth of the light becomes. Below threshold 

G < 0 and r = 0, i.e. no average light field exists. We have excluded the 
O 

case G = 0. This case will be dealt with when the Fokker-Planck equation 

is discussed. 

5. CLASSICAL AND QUANTUM THEORIES OF COHERENCE 

In this chapter we shall treat the classical and especially the quantum theory 

of coherence. One wishes to know the difference between the coherence properties 

of light from thermal sources and light from lasers, but at the same time, we 

have to solve the problem of what to measure. We have introduced concepts 

like creation operators but we must also know what to answer an experimentalist 

if we are asked what can be measured. We have decomposed the electric field 

E => Eoperator (x,t) C(b ~ - b)sin <x 
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We would have obtained Heisenberg equations for b(t), b#(t). It remains to 

devise procedures to construct measurable quantities from these operators. 

It is useful to start with the concepts of the classical theory of coherence. 

So let me remind you of Young's double slit experiment, by which Young proved 

the wave nature of light. 

?- 

r, 
I 

What does the field look like? The positive frequency part of the classical 

field emanating from slit i is (~ = kc) 

E + = E exp[ik(r i - ct)] = (Ei) ~ 
i O 

The instantaneous intensity I I due to field is (proportional to) 

I I = ~ E 2 = ~(E + + E-) 2 = ½(E+) 2 + ~(E-) 2 + E+E - 

The response times T of the human eye, and of conventional light detection 

systems equal very many millions of periods of the light field. Thus what 

is actually observed is the "moving average" intensity 

(47) 

1 t+ 
l(t) = <I I> = T f ll(t')dt' , with t± =t ± ~T. (48) 

t_ 

1 
With ½(E±) 2 ~ ~2i t, their contributions are smaller by a factor ~-~-~ <<< 10 -6 

than that of E+E - = IE+[ 2, which is thus the only term to survive the averaging 

process: 

I = < ½E 2 > = < E+E - > = IE+I 2 = <(E~ + E])(E T + ET)> = G11 + G22 + G~ + G2z (49) 

where the last step follows from the superposition principle. In Young's 

experiment the distance to the screen very much exceeds that between the slits. 

Thus, as in (47), the "amplitude factor" E is practically the same for both 
o 

slits. Hence, with 

Gij = < E + E- > = G~.. i J j1' so that Gii is real, (50) 
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it follows from (49) that 

G11 = G2z = EZo and G1z = G21 = EZo ei~' ~ = k(rl - r2)' 

so that from (49), 

I = 2E~ (! + cos ~) (51) 

-see illustration for case A = B = E 2. 
o 

2A 

2(~-8) 

Now (49) implies perfect coherence, as both E l and E~ have perfectly well- 

defined frequencies, wave-numbers, amplitudes and phases - each represents a 

train of waves that extends infinitely over all of space and time. With 

the fringe intensity minima equal to zero in (51), the fringe visibility 

Imax ) - Imi n 
(52) . 

V S imax mln nelghbourlng maximum and minimum 

and degree of coherence is one (hundred percent). 

With less than perfectly monochromatic light, I . > 0 and V < I. It is 
mln 

clear from the above that (49) is still valid, but not (47). With the usual 

Young's experiment, each slit separately (with the other one closed) yields 

the same intensity (11 = Iz) , so that 

G11 = G22 ~ A 

and G12 = G~i E Be i~, (53) 

with ~ once more the phase difference between the waves from slits ! and 2. 

Substituting (53) into (49), we now obtain 

i 

I = 2(A + B cos ~) . (54) 
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Now I 
max mln 

of coherence IYI between the light from slits I and 2) becomes 

= 2(A+B), I . = 2(A-B), and the fringe visibility (and the degree 

cannot be negative, it is clear than B < A in all cases. ~ 

B 
v = i~l = 7" 

As I . 
mln 

More generally, we define the complex degree of mutual coherence as 

+ -- + -- 

~I2(T) = <gl(t+T)g (t)>< ELI2> ~ <E~12>-~ 

= GI2(T)/G/~I I G22 

It is a measure of the "sharpness" of the fringes in an interference ex- 

periment. The link between experiment and theory is given by GI2 - the 

correlation or mutual coherence function, "mutual" because it refers to 

two different beams. 

Eventually we want to replace the time average by an ensemble average, and 

also for this reason T has to be long, otherwise the ergodic property 

The classical expression 

(52a) 

mentioned cannot be used. 

Now let us come to quantum mechanics. 

+ ,) G(],2) = <E (x,t) E-(x',t > 

(55a) 

(55) 

can be generalised to a quantum-mechanical expression. We shall see how a 

qusntum mechanical analysis of a detector experiment leads to a natural quantum 

mechanical generallsation of (55). Consider the following interacting systems: 

I det ctorl 

H + H + Hf + Hf_ d s s-f + H d = H 

H F = H + + Hf s Hs-f 

H =HF+H d 
O 

Hin t = Hf_ d 

~This also follows from the definition (50) for G... With i = j, the integrand 
ij 

in (48) is always positive, and permits no cancellation due to varying phase, 

as happens when i # j. Hence with I I = 12(IETI 2 = IE~I2), IGl21 = JG21 j is 

always smaller than GII = G22. 
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The eigenstates of H F are called the dressed field modes, for the source- 

field system. The Schrodinger equation 

ih ~ = (Ho+Hint) 

can be solved in the interaction representation 

where ~ = 

Hint ~ = 

e-iH°t/h~ ~ and the Schrodinger equation assumes the form 

eiHot/h e-iHot/h 
in which Hin t = Hin t , 

The simplest detector is a two level atom. 

, | 

How does this work? 

H d h + = 60a2a 2 

H. 
Int 

A E = fdv ~(-e/m) _ i V 

If = al~ I + a2~ 2 

= a ~ we obtain Hin t 2 al f~(x)(-e/m)~ A+(x) ~i dV 

Since H d commutes with HF, we have 

int 
= N)T _ ~+i eiHdt/h a~ale-iHdt/h fdv ~(- e h eiHFt/h A + e-iHFt/h 

eiVt/ha~al fdv~ e h + 
(-m)i A (x,t)V~1 

and the wave equation contains an operator 

F(x,t) ~ eiHFt/h A+(x)e -iHFt/h 

It must look as if the possibility to calculate A+(x,t) is a hopeless one. 

Fortunately this is just the Heisenberg operator A_+(x,t) corresponding to 

the Schr~dinger operator A+(x) at t = 0. We shall assume that the 

interaction is weak in (56) and use perturbation theory to calculate the 

detection probability 

(56) 
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r(t) < ~('t)]~ ~+ I~(t)> = a 2 

= < ~(t) la ~ ael ~(t) > (57) 

which is the probability that at time t the upper state is occupied. 

first order form for ~(t) is 

I t ~ ~(o)dt' $(o) 
~(t) = Th- ~ Hint + 

where 

The 

(58) 

~(o) = ~F × ~d (°) 

+ 

= ~F × a2 ~0 

is the initial, uncoupled state of field and atom. 

Substituting (~) into (~7) we obtain 

h2e 2 t t 
P(t) = m2 fo dT fodT I < ~FIA__-(x,T)A+(xIT1)I~ F 

• (~2 v ~(x) , @2 ~ v ~1(x I) d3x d2x ' (59) 

In reality we must replace the P by a new P that contains an average over 

thermal states. In reality one has a set of atoms and we then have a sum 

over the various ~ of the atoms. If the frequencies in the light are sharp, 

compared to the broad spectrum -~<\~< ~ of the atoms, we can replace the sum 

e-i~(T-T') • by 2~ 6(T-T ). This is an ensemble of atoms - called a 

broad-band detector. Then in (59) we replace T ~ by T. One can also think 

ideally of one atom only (no statistical arguments) with a large linewidth. 

If the wavelength of light is larger than the dimensions of the atoms we 

x z ÷ x in the integral and we thus would obtain for could replace x ÷ Xo, o 

the absorption rate 

dP 12 IA- 
d--~ = ]Pzl < ~F (Xo'T)A+(Xo'T)[~F >" (60) 

It looks as if this result is purely classical in the sense that, by the 

ergodic theory, time averages and ensemble averages are equal, so that (60) 

could have resulted as a classical ensemble average from a time average. 
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But this is not quite true. The role of the quantum theory is to prescribe 

the sequence A-( )A+( ) in which the operators occur. 

Thus in a double-slit experiment, to check the coherence properties of a 

field A, we look at 

A = A(x,t) + A(x I,t I) 

where A(~,t i) is, say, a time-delayed and/or sp=ce-delayed beam prepared 

from A(x,t) by some delay or splitting mechanism. (A delay can be realised 

by using a semitransparent mirror.) By recombining the two A's we can 

look at things like 

G(],2) = < ~F IA-(1) A+(2)I ~F > 

We have here a one-photon process. We could also take n-photon processes - 

multiphoton processes yield higher order correlation functions. 

We shall now investigate how these correlation functions can be calculated 

theoretically by means of the Langevin equations below and above threshold. 

This means that we shall show how a model for the laser, (a model for the 

interaction of ~ield + matter + reservoir) can be used to determine the 

correlation function < ~FIA_-(])A_+(2)]~F > 

SF[E(- ) E + t • z (xjt) z (x ,t )I~ F > or, or < 

for that matter, < ~F]b+(t) b(tI)l~F > , since these quantities are related 

through the expansion of the electric field operator 

E~(x,t) = (b + - b) ix/~ V~ sin kx 

(in the case of a single-mode electric field E 2 - just to remind the formalists, 

a multimode electric field is given by 

E2(x't) = k~(b~D - bk) i ~ V~ sin kx) 

In order to calculate 

< ~Flb+(t) b(t I)I~ F > P 

we use the Langevin equation 
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g2D ° 

d b = (-i~+ -- - ~)b - Cb+b b + F 
dt y tot' 

again in two cases, namely (a) below threshold, 

and (b) G > 0, above threshold. 

(a) Below threshold 

db 
= (- i~ - [G])b + Fto t d-T 

or b(t) 
t G])(t-T) 

= ~ e (-im-I Ftot(r)d c 

+ b(o)e(-i~-]G] )t 

and we take the time t large because we are interested in the stationary 

state of the electric field. In this case the homogeneous term in (61) 

can be neglected and the results for the correlation function is 

< ~Fbt(t) b(t')~ F > 
t t' e (i~_ i G i ) (t_T)e (_i~_ i G i ) (t,_T,) f dT f dT 
0 G 

(6|) 

"< ~FIF~ot(T)Ftot(T')I~ F > 

To evaluate the expectation value in the integrand we remember that F 
tot 

wa~ eomnn,md~ ~ ~o!!ows 
. . . . . .  r . . . . . . . . .  

-ig 
Fro t = F + ( Y ~) ~ F 

where F = noise source for field from, say, mirrors and 

F ~ noise sources for matter field (atoms in heat bath, say) 

and we note that the noise sources or reservoirs are statistically 

independent of another, i.e. 

<FtF > = < F # > < F > = 0 

and that means that cross products vanish. So we have 

< %IF~ot(t)Ftot(t')1% > = < %IFt(t)F(t')l% >+g~ ~ < ~ Ir~ (t)r(t') > 

= 2Knth6(t - t') + C~(t - t') 



44 

In the following paragraph we shall prove the 6-function property of 

< #FIFt(t)F(t')I~F > : Consider as on page BO the model of a field b, b ~, 

interacting with a heat bath. After eliminating the bath variables, we 

obtain the Heisenberg equation of motion (Haken 1970a, p40) 

t 
dbt i~bt - / b#(T) ~ IGcoleeico(t-T)dT i~ G ~ #" " i~t 
d'-'~ = t + w B c o t t o ) e  . 

o 

We assume that the Gco's are of about equal amplitudes so that we have 

~IGCOl e e iCo(t-T) = 

with K = ~IGCOo 12 , 

In this case we have 

~t = ico b t - Kb + 
0 

2K~(t-T) 

i~ G ~ t. . iwt 
Co Bco(to)e 

Ft(t) 

where the last term is evidently the fluctuating force. We determine 

the properties of the fluctuating force and evaluate 

< ~FIFt(t')F(t')l~F > = ~, e iCot e -iCo't' G ~ GCO, <~FIBZ(to)BCO,(to)I~F> 

where the expectation value in the "mixed state" is obtained by taking 

the trace 

< ~FIB~ (to) BCO, (to) l~ F > 

t Bco[ % T _Z h co B03 1 
S [B ToO (to)BCO ,(to)e 

S [exp(- ~h~0 B # Co B~I KT)] 

= ~0 if ~0 =f=C0' 

E (r)6 , ~ w 6060 

F~ (t)F(t ' ) = ~ IGCO 12 eiL0(t-t')~0(T ) 
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nw(T) is the number of heat-bath bosons in the mode corresponding to ~. 

That is 

< Ft(t)F(t ') > = 2K~(t-t')n~(T). 

Of course, this result normally appears under a time-integral which contains 
im t 

a factor e o , where ~ is the frequency of the light field. If this is 
O 
° 

taken i n to  a c e o u n t , ^ o b t a l n  

< Ft(t)F(t ') > = 2K~ (T)6(t - t') 
O 

and < F(t) Ft(t ') > = 2K(~ (T) + l)6(t - t') 
o 

The 5 function here expresses the fact that the heat bath has a very 

short memory. 

We now return to the calculation of the correlation function for the 

time ordering (t > t'): 

t t' 
< ~FJb#(t)b(t')l~F > = / aT ~ dT' e(iC°-IGJ)(t-T)e (-i~-IGj)(t'~ ~ ~ ' T v ) 

o o -C g f~-79 

C iL0(t-t') e IGI(t-t') 
= 2--~e 

i~(t-t') -JGI(t-t' ) i~t%~, 
= e ~ < ~FIU <-ju~oJl~F > 

From this follows, for the medium below threshold, that <b+(t) b(t') 

increases with the pumping rate ([G I ÷ 0) and Yeff = 

increasing pumping, or the linewidth becames smaller 

> 

G decreases with 

(b) Above threshold: The nonlinear Langevin equation, taken classically, 

has the solutions 

b = (r ° + p)e i~ e -i~t 

where $ = 
J. 

Im Ftot, ir o 

t 
] ~ dTl~(o ) = ~ /o Im Fto t 

r 2 = GIc. 
o 
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In lowest order 
< p2 > 

r 2 
0 

<< ] the correlation function is given by 

< bt(t) b(t) > = r 2 e icO(t-t') <ei$ (t) e-iS (t') > 
0 

where #(t) = ~ ~ (t) is a sum of independent stochastic variables (phase 

angles) ~B(t), due to the different heat baths. 

< ei$(t) e-i#(t') > = ~ < ei($B(t) - SH(t')) > 

<(1 - $~(t )) ~($B(t) ~(t')) i($B(t) . . . .  

<(l - ~($~(t) - ~(t')) 2) > 

-21 ~< ~(t) - Q~(t')) 2 
= e 

-21 2"Yeff ( t - t ' )  
= e 

In the last step we have used the argument that the phase angle is a 

stochastic variable in a sense similar to the x-position of a particle 

performing a Brownian motion. If the density of particles n satisfies 
~n 

a diffusion equation ~ = DVen the diffusion is adequately described 

in terms of the solution 

! _x2/4Dt 
n = N ~  e 

and the average < x z >, is given by 

< x 2 > = 2Dt 

as is easily shown. Since ro~ plays the role of x, we have 

< r2(D~) 2 > = 2Dt or < ~(1) - ~(t')) 2 > = 2~f~(t-t'); ~{N = 

We finally obta r ~ < (~(t) - ~(t')) 2 > = Yeff(t-t') 

<ibT(t) b(t,)l > z e-Yell (t-t') eiW(t-t ') 
= r 0 

D 

r 2 
o 
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so that this function increases with increasing pumping, and also 

~ ±) 
Yeff ÷ 0 as G ÷ oo (Yeff g ' 

Thus both below and above threshold K I and Yeff have the same monotonic 

behaviour, < I increasing and Yeff decreasing. In order to distinguish 

between the two states of the laser, (the thermal state and the coherent 

state) we must look for (a) a method to ~ive information about G = 0, 

and (b) we must look for quantities which really behave differently below 

and above threshold. We need a higher order correlation function. 

The one that behaves differently is 

~2 = < b#(t)b#(t')b(t')b(t) > 

(The quantum mechanical average of a triple product is not interesting - 

it vanishes). One looks for the deviation 

K 2 = < bt(t) b%(t ') b(t') b(t)>--I<b@(t) b(t')>~ ~. 

Again we have a behaviour below and above threshold. 

threshold we get 

K2= 2J< b%(t)b(t')mJ 2 -- JKb%(t)b(t')>I z 

When we are below 

f< b*(t)b(t') >I 2 

I<1(tlt')J 2 

whereas, above threshold, we use the decomposition 

b = (r ° + p)e i~(t) e -i~c 

The leading term will contain a r 2 All we have to calculate really is 
o " 

< (r 0 + p)4 > _ (<(r ° + p)2 >)2 

~r~ < p(t)p(t') >. 
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We have derived the equation for O previously and we have found 

= -2gO + Re 
tot 

The result is, as before 

-2C <n> I t - t ' l  
K= - IKI ~ = const. (nth + nsp) e 

where <n> is the average photon number. With rising photon number this 

function decreases. 

2 K~-IK,I 

The second order correlation function K 2 behaves entirely different above 

and below threshold. Now the experimentalists can distinguish laser 

behaviour below and above threshold. 

6. LAST LECTURE 

Yesterday we looked at the statistical properties of laser light. But 

there was still a gap. Our method distinguished between pumping rates 

below and above threshold. For an improved theory we again consider, for 

the sake of simplicity, the one mode case, where we obtained, after 

elimination of the matter variables 

db 
- -  = 

dt (-im + G)b - Cbtb b + Fto t 

or q Gq - Cqtq q + F e i~t 
tot 

_i~0t 
where b = q e If we assume q to be a classical variable, we obtain 

the nonlinear stochastic equation 

q = Gq - Ciql 2 q + F~to t (61) 
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which is a generalisation of the equation for Brownian motion 

dq [GIq + F(t) 
dt 

where q plays the role of particle velocity. As in the case of Brownian 

motion we can introduce a probability function f(q,t) such that f(q,t) d 

is the probability of finding the particle at time t in the interval dq. 

The function f(q,t) satisfies a Fokker Planck equation 

df _ d (iGIqf) + Q d2f 
dt dq dq2 

where < F(t)F(t') > = Q6(t-t') 

In a similar sense the Fokker-Planck equivalent of the equation (61) is, 

in terms of the variables r,~ such that q = re i@,- 

df 1 3 1 
-~ r -~ [ (Gr2 - (r4)f] + Q { ~r (r3f'+0r 1 3 2 - -~--) } (62) 

A simple explicit solution is the stationary solution (f = 0) with C-independent 

boundary conditions. In that case we may take -~- ~ = 0 and the resultant 3¢ 
form has a first integral 

3f 
(Gr 2 - (r4)f = Qr ~r 

or f(r) = Ne -v(r)/Q 

G r2 Cr ~ 
where V(r) = ~ + 4 

This is quite a nice eesult, which is, in this approximation, independent 

of the magnitude of the pumping rate G. Graphically we have the 

representations ~o~V: 
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>.r 

~v('~) 

As abses we could also have used the variable q instead of r = re q, since 

have rotation symmetry ~ = O. The distribution function has we a 

different behaviour below and above threshold and f is a continuous function 

of G. 

) T 

Can one measure these things? Yes. 

at equal time (classical average) 

Consider again a correlation function 

co 27 

< b#b b # b > = f dr r e f d~ r4f 
o o 

- < n 2 > 

or, consider the difference 

< n 2 > - <n> 2 -- <n> (I + <n> H2) 
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to define a measurable quantity H 2. 

quantity. A calculation of H = 
e 

and we brain below threshold: 

Arrechi (1968) has measured this 

< n 2> - <n> 

< n >2 
| can be performed 

< n 2 > - <n> = 2<n> 2, H 2 = | 

or < n 2> - <n> 2 = <n> 2 + <n> 

which is characteristic of Bose-Einstein statistics, whereas above threshold 

< n 2 > - <n> 2 = <n> 

which is characteristic of a Pois>n distribution. 

I 

How can we interpret this? 

The new theory gives a smooth transition between the limiting cases G < 0 and 

G<0. The Bose-Einstein distribution implies that below threshold the 

photons come in clusters, they come simultaneously and then for a while 

only a few. Should we plot the number of photons as a function of time, 

we get rather large fluctuations. Above threshold the fluctuations of 

photon number as function of time are much smaller. There is a certain 

mean time distance between the events, fluctuations are much smaller. 

The physical reason lies in the stabilization of the laser - the laser 

action can be explained by the depletion of atoms - while laser action takes 

place atoms are depleted and then they get filled up again by the pump 

mechanism. In the steady state you have a rather well defined depletion 

and whenever the photon number should~become too big the atoms react 

correspondingly and emit less photons so that the old production rate is 

secured. On the other hand, if there are too few photons produced then 

the inversion will go up and produce more photons. That means laser light 

is well stabilised and we have a well stabilised amplitude. 
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QUANTUM STATISTICAL TREATMENT OF OPE~ 

SYSTEMS , LASER DYNAMICS AND 

OPTICAL BISTABILITY 

F . Casagrande and L.A. Lugiato 

Istituto di Fisica dell'UniversitA , Filano , Italy 

Abstract 

A typical problem Of statistical mechanics is the dynamics of open 

systems, i.e. systems in interaction with a thermal reservoir. Namely, 

we illustrate a method to treat quantum open systems recently elaborated 

by one of us (L.A.L.) and apply it to problems in the field of quantum 

optics. When the reservoir is weakly perturbed by the system we recover 

the well known results,already obtained via treatments at second order 

inthe reservoir-system coupling constant,concerning the radiative decay 

@f a two-level atom A la Wigner and Weisskopf and the Brownian movement 

of a harmonic oscillator. On the other hand,our method can be applied 

also in the case of strong coupling between system and reservoir. This 

allows describing phenomena as the l~ser and optical bistability treating 

in detail the quantum statistical aspects. 

I. Introduction 

The study o£ the interaction between matter and radiation has always 

been one o£ the major topics in physics. At the beginning o£ the sixties, 

the applicatioms o£ basic physical principles as well as o£ me£ined 

technologies allowed the firs~ observations of laser operation. This 

event opened a new field, laser physics, which has focused a continuously 

growing interest and is nowadays the core of that branch of modern physic2 

which is called quantum optics. 

From a theoretical viewpoint, the rich phenomenology which is the object 

o~ quantum optics can be regarded as a stimulating field of application 

of quantum s~atistical mechanics. Or, more precisely, Synergetics [I] . 
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In tact, one deals with many-atom open systems tar from thermal equili_ 

brium whose dynamics is of a cooperative nature and which show phase- 

transition-like behaviors. Clearly, £1uctuatios and correlations play 

a fundamental role. Hence a fully quantum statistical approach is the 

most suitable framework in order to describe thes~phenomena. However 

the most consolidated tools in the investigation of open systems are 

essentially weak coupling treatments. On the contrary a peculiarity of 

the phenomena in laser physics is the strong interactiombetween the ato- 

mic system and the electromagnetic field. This requires an extension of 

the previous methods to trea~ strong coupling situations. Recent progress 

in this sense has been obtained by a method to treat open systems develo_ 

ped by one o9 us[2~. In this paper we rewiew this approach and some 

recent applications in quantum optics. In this way, first we clearly 

show the underling common quantum statistical basis and secondly we 

give a unified treatment o£ a variety o£ phenomena. 

We start by illustrating in section 2 the quantum theory of open systems. 

We introduce the general formalism in a way that lends itself to the 

subsequent applications. The basic concepts and definitions of quantum 

statistical mechanics which are the background for our treatment are con 

cisely reviewed in reference 3. In the following section we illustrate 

two simple applications, the decay of a two-level atom and the Brownian 

motion of a harmonic oscillator. This has not only illustrative purposes, 

since these examples are of fundamental relevance For the construction 

of the one-mode laser model which is described in detail in sec. 4. 

By means of this model we treat two remarkable phenomena in quantum op- 

tics, i.e. the laser and optical bistability. In sec. 5 we 2ecover the 

basic results oF the semiclassical approximation, in which we neglect 

all Fluctuations and correlations, both in the stationary and in the 

transient situation. Sec. 6 is the main part of this paper. We show that 

the usual assumption of weak interaction in the approach introduced in 

sec. 2 must be d2opped if we want to describe these phenomena in a fully 

q~antum context. Thus we £ollow the more powerfu~ procedure o£ ReF.2, 

which applies in these cases as well. It Follo~s a unified treatment 

of laser and optical bistabili~y , in particular we give a detailed 

discussio~ oF photon statistics in both phenomena. 
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2. Dynamics of open systems 

Let us consider a quantum system S which is open, i.e. it interacts 

with a thermal reservoir R. ~ exchanges energy and possibly matter with 

~, which is a macroscopic system characterized by a very large number 

o£ degrees of freedom ( ideally, infinites ones ). The reservoir is 

initially in an equilibrium state at some temperature T. The interaction 

with the system S disturbs the reservoir R and makes it deviate from its 

equilibrium state. However, since the 9eservoir is very big, these @i 

sturbances are small and are rapidly eliminated by those dissipative 

mechanisms which sistematically lead the reservoir back to equilibrium. 

On the contrary, S is strongly affected by the interaction with R. 

This interaction ultimately leads S to reach the thermal equilibrium with 

the reservoir. Our aim is to study the dynamics o£ the open system S 

under the influence of R, i.e. the time evolution Of S when it is driven 

by the reservoir. 

To this end, let us consider the composite system Q=- S + R. Its Hamilto 

nian has the structure 

I--4 = H s + H R + HsR 

where Hs(H K) is the Hamiltonian of S(R) and H~R is the interaction 

Hamiltonian. The statistical operator W(t).of Q obeys the Von ~eumann 

equation (VNE) 

i t  

j• L t i s 

We are interested only in the dynamics of the subsystem S. Now to cal 

culate the mean values end the 91uctuations of the observables o£ S it 

is not necessary to know the statistical operator W o£ the whole system 

S +R, but it is enough to know the "reduced" statistical operator 

of the subsystem S alone 
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where Tr~ means "partial trace" over the Hilbert space O£ R. Hence the 

problem arises o£ deriving the time evolution equation £or the reduced 

statistical operator ~ from the VNE (2) £or the £ull statistical operator 

W. This equation must be closed, i.e. it must be expressed only in terms 

o£ the variables o£ the subsystem S. Usually such a problem is solved 

by the so-called "projection operator technique" developed in General 

by Zwanzig [4] and adapted to open systems by Argyres and [s] Kelley 

(see also [6]).However, the projection technique is not suitable to 

treat the laser. Thus we shall £ollow a more power£ul method [2], 

2.1 Hierarchy o£ equations £or the reduced statistical operator and 

for bath-system correlations. 

For the sake o£ simplicity we shall take the reservoir R as a system 

o£ noninteracting harmonic escillators or as a system o£ noninteracting 

two-level atoms. This is suitable to illustrate the method in the sim 

plest possible situations. Furthermore, in the applications that we 

shall consider later the reservoir is just o£ this kind. When the reser 

voir is a set o£ noninteracting harmonic oscillators labeled by j=1,2,... 
+ 

n we call B$ and BI the annihilation and creation operators o£ the 

j-th oscillator. These operators obey the commutation rules 

(5) Bb, B~ = Ba B s = B; ; = o. 

On the other hand, when the reservoir is a set o£ noninteracting two- 
+ 

level atoms again labeled by j=I,2, .... n we call B$ and B~ the 

lowering and raisin G operators o£ the j-th atom. In this case one has 

the anticommutation rules 

( 6 1  B ;  , a , • , , " 

I n  bo th  cases the H a m i l t o n i a n  o£ the r e s e r v o i r  i s  g i v e n  by 
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where 63~ is the Frequency o£ the j-th oscillator or the transition 

Frequency o£ the j-th two-level atom. It is not necessary to specify 

the Hamiltonian of the subsystem S. 

Finally we assume the Following structure For the interaction Hamilto 
I 

nian: 

~s B s -AB~ ) , 

where ~ is a suitable couplin 0 constant which we take real For 

simplicity and A is any operator in the Hilbert space o£ the system 

S.The structure (8) is admittedly not the most general, but it is enouoh 

to treat all the problems considered in this paper. 

As initial condition For eq.(2) we assume that at time t=O the subsy_ 

stem and the reservoir are uncorrelated and Furthermore that the reser_ 

voir is in equilibrium at inverse temperature ~ , so that 

As a first step we take the partial trace of the VNE (2). We get 

okl: 

where eq. (4) has been used and 

(11) W('l')([.). '-~ R (B~'W(~')) , W~(-)I~) -'~-~'~VR < B] W(~,)). 

W~ (÷) I W~ -) are operators in the Hilbert space o£ the subsystem S 

alone. Note that 

* % W / - ~ J  = < Sj > <t~, (,2) % Wj+,IL> = < F,j ~ ~t~ , 

where ~ 0 > indicates in general ~he mean value o£ the observable O. 

w c±) Furthermore, the quantities allow to calculate a suitable set o£ 

bath-system correlation Functions. In Fact, For any given observable 0 

o9 S we have 
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~( /  bP){ .... J . (12') ~ C 05 ,v~ .~) ) ( 05 B T >  (~j e ~6 

For t h i s  reason,  we c a l l  W~ +) (as we l l  as the £o l low ing  q u a n t i t i e s  

W! e-j etc.) "bath-system correlations". 
J 

The relevant point is that eq. (10) is not closed in y, because there 

appear the quantities Wj . There£ore, we are led to derive £rom the 

VNE the time evolution equations £or w. C±) To this aim, we multiply j 

eq.(2) times B~ or B~ and take the partial trace over the reservoir. 

A£ter some calculations we £ind the £ollowing equation: 

iW~ ÷~ TY. W(*'(L) ~ W'*'i I~) 
&L 

ga (A+ '" ' "  N s 
Again we meet new q u a n t i t i e s ,  namely W (+-} and W({~'~, where e .g .  (c£ r .  

(11),(12)) 

W 
(e-) * 

(14) 
\~/C÷-~ + 

The e q u a t i o n  f o r  W~ -1 i s  immed ia t e ly  o b t a i n e d  by o p e r a t i n g  h e r m i t i a n  

c o n j i u g a t i o n  on e q . ( 1 3 ) ;  in  £ac t  

At this point, we derive £rom the VNE the time evolution equations £or 

wC÷-) the quantities j~, etc. These equations will contain in turn new 

quantities more, as e.g. 

W (++-9 ~ + 

where three operators B appear. In such a way, we obtain a hierarchy 

0£ linear equations £or the reduced statistical operator ~ and £or 

the bath-system correlations W with an arbitrary number o£ reservoir 

operators B. This hierarchy o£ equations is equivalent to the VNE (2). 

Clearly, one must suitably truncate this hierarchy, so that a£ter elimi 

nation o£ the auxiliary quantities W one obtains a closed equation £ory, 
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A general truncation prescription does not exist to our knowledge. One 

must choose the proper truncation procedure according to the individual 

problem that is studied. Now we shall illustrate the simplest trunca~on 

procedure. A more refined one will be shown in connection with the treat 
n 

merit of the laser and of optical bistability ,in sac.6. 

2.2- The master equation for weak interaction between system and reset- 

voir 

Let us consider the two eqs.(10),(13). We can formally solve eq.(13) for 

~it~t) by treating the quantities as W(+-as- known quantities and taking 

i n t o  a c c o u n t  t h a t  W 5 (0)= 9(0)  <B =O due to  e q s . ( 1 1 ) , ( 9 ) , ( 7 )  and to  the  

f a c t  t h a t  I <B~ = T ~  B; e / 

Hence by substituting this expression for W (*) (t) into eq.(10) we obtain J 

the following equation 

v 

(16) 

- A, e. (X~-%)(~-~:) _ A* 
-J ~v j  ( - * l  . ^ - t  , , , v z (  +''I'j 
(z'J 4- W~,j (s'),,% +AWj3,(~) 

-~w{ j ,  (~) -  Wii, [ ~ )  Wj,~ ('~) 

Eq.(16) is still exact but it is not closed in ~ owing to the pre_ 

~L ')etc. To a closed equation, we must ex sence of the quantities W get 

press these quantities in terms of ~ . This can be easily accomplished 

when the interaction between the subsystem and the reserv43ir is weak,so 

that the subsystem disturb5 in a negligible way the reservoir, In this 

case one can extend to all times the factorization ansatz(9): 

(17) W(~)----._~(e) 6 / 
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Using the ansatz and the definition (14) o£ W ~*-), one immediately has 

(18) 

(-+) + 

W t~e) I + ~: £--) 

Substituting (18) into (16) we obtain the closed equation for ~(t) 

[ ,+ 

- < ' . ' ; '  lJ 
gq. (19) has two contributions: the first term is the free evolution 

o9 the subsystem, while the second term comes from the interaction with 

the reservoir. T~e assumption o£ weak interaction is reflected by the 

9act that this term contains the coupling constant only at second order. 

When the interaction is strong) as in the laser, one finds contribution 

o9 all orders in the coupling constant [2~. 

Eq. (19) can be written in a more compact way by introducing time cot_ 

relation £unctions for suitably defined quantities as it follows: 

By (20) and similar expressions, eq. (19) becomes 

4k o 



61 

• A c.  ( z )  . <~3(o)G3"(~-~ e • 
l 

• , < ~ , ~_ f ~'-:~ A 

- < ~ : ~ - z ) ~ g " ( o ) b  [ A  + e 

Note that in eq. (21) the only quantities which refer to the reservoir 

are time correlation functions such as (20). In other words, the reset 

voir acts on the subsystem just via its time correlation 9unctions. 

Eq. (21) is an integrodi££erential equation in which the derivation o£ 

at time t depends on the values o£ ~ on the whole interval £rom time 

0 to time t. Hence one says that p(t) has "memory" o9 its time evolu_ 

tionand eq.(21) is called "generalized master equation" or " nonmarko£ 

£ian master equation" [7,4] . However, in our case this memory el_ 

£ect or nonmarko££ian character is only apparent, because under our 

assumptions eq.(21) can be very well approximated by a di££erential 

equation as £irst shown by Van Hove E7 ] e 

To show this, £irst o£ all we pass to the interaction picture in order 

to eliminate the rapid variation o£ ~ in time due to the £irst ( £ree 

evolution) term on the r.h.s, o£ (21). We recall that the relation 

between the statistical operator in the interaction picture ~(X)and in 

the Sch~dinger picture ~ is 

The time evolution o£ 

£ollows 

can be written in a compact way as it 

(22) = IT j< (~ ~ ) ~ I~) 
it 

where the operator K has the £orm 
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(23) 

i<C~) • = <~*I~)6~I0)>~ e At, +~(oJd3+(~> 

e A .A + <~+(0) G3(~) e "A + 
I I 

I 

In writing (23), we assumed that S is a harmonic oscillator or a two- 

level atom o£ £requency~o~a system o9 identical harmonic oscillators 

or two-level atoms) so that in the interaction picture the operators A 

and k ~ have the £ollowing time evolution: 

(24) A(; iL -) = e A , - 

The variation o£ 9 in the interaction picture is slow, because it arises 

only £rom the weak interaction ~ith the bath. Let us call eZ" I a time in_ 

terval which characterises the time variation o£ p(l{ on the other hand 
4 

the kernel K(t) in eq.(22) is the sum o£ £our contributions, each o£ 

which contains a time correlation £unction. Since e.g. 

L'. - -~  o o  i 

the kernel K vanishes £or t tending to in£inity. This is due to those 

dissipative mechanisms o£ the reservoir which damp the £1uctuatioms 

sNstematically leadin~ the reservoir back to equilibrium. This approach 

to equilibrium is very rapid since the very Fast relaxation times are 

the peculiar £eature o£ the reservoir R. I£ we call "~o a time interval 

which characterizes the approach to zero o£ the time correlations in 

play (and by (23) o£ K ), we have the basic relation ~o << "r 

Now let us come back to eq. (22). We can write 

it 

_~ I t ~ K C~) ~ I~-~) ~>~o 
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~ut p ( v - ~ )  = 9 ~ )  fo, o .<o-'.< -~o .ence 

Finally, taking into account that K( ~ ) is practically zero For g>~'o ; 

we get 

ol~ o 

Eq. (25) is a purely differential equation, which has no memory effect. 

This equation is called " MarkoFFian master equation" or "master equa 

rich" (ME) tout court. The MarkoFFian approximation is justified by the 

separation o9 two time scales: the time scale o9 the reservoir which 

is characterized by 7o and the time scale o9 the subsystem which is 

characterized by ~. By introducin G the £ollowin G symbols 

jo ~° - ~o (26) C~*-~(~o) = a~ z ~ + l ~ )  ~ o ~ > ~  e , 

and coming back to the SchrSdinger p i c t u r e ,  the ~ takes the F i n a l  Form 

(27) o[[" 
+ 

.(C afl l, 

t+-* i e 

Note that the ME (27) has a different structure Prom the VNE (2). 

In the latter one has only commutators with the Hamiltonians, describing 

a conservative dynamics. In the ME-apart Prom the Free evolution term 
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which is a conservative one-one finds terms with commutators of a more 

complicated structure. As we shall see from specific examples, these 

terms are not conservative but describe the dissipation o£ the energy 

o£ the subsystem into the reservoir. 

As it follows from (27),(26), the coefficients o£ the ME are one-sided 

Fourier Transforms (i.e. Laplace Transforms) of time correlation func~ 

tions of reservoir operators. Now, according to the well known theory o£ 

transport coefficients developed by Callen, Kubo, Green et al E8] the 

transport coefficients are just one-sided Fourier Transforms of time 

correlation functions. This £act establishes the connection between the 

theory of the ME and the theory of transports coefficients: the coeffi- 

cients of the ME are transports coefficients o£ the reservoir. 

Therefore we can apply some fundamental theorems of the theory of 

transport coefficients to show the remarkable links which exist between 

the coefficients of the ME. In fact, let us divide these coefficients 

into real and imaginary part 

(28) X 

^(~--} 

C C o) Ac °) + 1 

Fimst, the real and imaginary parts are linked by the so-called 

Krame~s- Kr6nf@ relatioms. 

Secondly, the fluctuation-dissipation theorem establishes the following 

link between the two real parts: 

Relation (i~) is o£ fundamental importance, due to its universality. 

In fact, it does not depend on the peculiar features of the reservoir 

but only on its temperature. 
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3.- Two simple applications: the decal ot a two-level atom and the 

Brownian motion ot a harmonic oscillator. 

We shall now consider two simple applications o£ the formalism dave 

loped in sac.2.2: i) the decay o£ a two-level atom and ii) the Brownian 

motion o£ a harmonic oscilator. 

3.1-~he decay o£ a two-level atom 

Ingeneral, an atom or molecule has infinite energy levels. However, it 

the phenomenon that we want to describe involves the transition between 

two levels only, one can describe the atom as a two-level system, ne 

glecting all the other levels [ 9 j . we put tot definiteness the zero o£ 

the energy o9 the atom halt way between the two levels, so that they 

have energies E~ = ~ ~o /~ and E i = -~ ~o/~ ,where GJo 

is the Bohr transition £requency 60o = (~2-~)/~ . The Hil 

bert space ot the two-level atom is twodimensional; each ket )~> can 

be expanded as 

(3o) I y> = ~ ~i> ~ ~ i~> 

where [ I > (~2>) is the lower (upper) state. One de£ines a raising 

(lowering) operator r+(r -) in the usual way: 

(31) r + li> ~- IZ> r* 12> = 0 
i / 

(3z) r-l±> = o ~ r-~2> =li> 

r :£ obey the anticommutation rule 

(33) ~ P+/ ~-i -- i 

It is easily seen that ~ (w-)+ ; ~Ft) %--- (W-)Z=¢ O. From eq. 

(33) it follows the physical interpretation ot the operators M÷) -- 

and ~-Y+ as the number ot particles in the upper and lower level, respec 

tively. We in%roduce also the inversion operator 



66 

The three operators r ÷ , r-and rA obey the angular commutation rela_ 

tions 

(35) r ~" ~- = 2 v "  3 gs r -'+ - - - - ~  I r -  
t / I 

This Fact is obvious iF we consider the matrix representation oF these 

operators in the basis11>112> : 

i o (o) (00) 
(36) ~+= ; ~-= e3= 

0 0 i o ~ o _ _  
.2, 

ire, 

the representation oF the relevamt 

energy H$ is given by 

( 3 7 )  H 
'' s = 0 

these operators correspond to Pauli matrices. Let us consider now 

observables o£ this system. The 

0) 
Z 

the polarization ~ can be expressed as 

= e <ll~ I i> 

where we have assumed that the twO levels have opposite parity. Eq. 

(38) justifies calling r t and~-~olarization operators. 

We now consider the interaction o£ our two-level atom with an electro- 

magnetic Field, which acts as a reservoir composed o£ noninteracting 

harmonic escillators corresponding to the Field modes. In the so-called 

dipole and rotating wave approximations the interaction Hamiltonian 

is given by 

a 

t 

/ 
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where B~is the annihilation operater corresponding to the j-th mode of 

the e.m. field. Hamiltonian (39) is just of the kind (89 • Hence, as we 

have proven, the reduced statistical operator ~ o£ the two-level 

atom obeys the ME (27) which now describes th~ dynamics of the two- 

level atom under the influence of the e.m. field. By (37), (18) one 

rewrites the ME in the following form: 

&l~ 
(40) 

From eq. (40) we see that the effect of the interaction with the reser 

voir is twofold. First, the atomic transition frequency G3 o gets renor_ 

malized, i.e. one finds a frequency shift due to the imaginary parts 

of the coefficients of the ME. The second and more important effect of 

the reservoir arises from the terms containing the real parts ~ l~& 

which are called damping or dissipative terms. In fact, these terms 

determine the relaxation of the two-level atom towards the thermal equi_ 

librium state. To see this point explicitly, we write the statistical 

operator p as it follows: 

where the conservation of probability requires that 

and due to the hermiticity of ~(t) 

By taking the matrix elements of the ME, we obtain the followin s foux" 

equations For the matrix elements of ~ : 
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9. 

[ 1 
where 60 -b CO o + ~{e-) ~(-÷) 

Note that eqs. (44a,b) are independent o£ eqs. (44c,d) and that the two 

latter equations are coplex conjigates o£ each other. The two eqs. 

(44a,b) for the probabilities give the simplest example of rate equations 

and provide the physical interpretation of the two parameters ~and ~j : 

~ has the physical meaning of transition probability per unit 

time from the lower to the upper state. Similarly ~ is the transition 

probability per unit time from the upper to the lower state. In fact, 

eqs. (44a,b) have a very simple interpretation: e.g. eq.(44a) says that 

the variation per unit time of the probability of the upper state is 

equal to the probability o£ the lower state times the transition pro~ 

bability per unit time from the lower to the upper state, minus the pro_ 

bability o£ the upper level times the transition probability per unit 

time from theupper to the lower state. Eq.(44c) is immediately solved 

On the other hand Eqs.(44a,b) are also immedi~ely solved recalling 

eq. (42) : 

-L~+~)~ ~' I i- 
From Eq. (45a) i t  £ollows that 

(4 a) -- o 
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with a relaxation rate 

(46b) d/. ~--- 

From (45b),(42) and the £1uctuation-dissipation relation (2~) one has 

(47a) ~ ~ I~) "- (~'f" -- - i 

L- 

the relaxation rate is 

The relevant point is that (46~)and(47a) turn out to be precisely the 

matrix elements o£ the canonical statistical operator o9 the two-level 

atom: 

(48) ~0 

This sho~that, as expected, the subsystem approaches a thermal equili_ 

brium state in which it has the same temperature o£ the reservoir. 

In particular, let us consider the case that the reservoir has zero 

temperature,i.e, that the electroma0netic £ield is in the vacuum state. 

In this situation the atom simply decays exponentially to the lower state 

In tact, if we put :-- oo in (47a), we obtain 

This is essentially the well known Wigner-~/e;sskop£ theory o£ the de 

cay o9 the atom. 

3.2. The Brownian motion o£ a harmonic oscillator 

Let us consider a harmonic oscillator o£ £requency (D o. The Hamiltonian 

can be written as 
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C~o) H~ = ~a,o (A+A +_t) 
1 

where A ~ (A) is the raising(lowering) operator such that 

One has 

(52) 2 
A + A. la/~} -- V ~  14A-4[> I~>= V%+~ i%~±> , 

Dur harmonic oscillator interacts with a reservoir of noninteracting 

two-level atoms or harmonic oscillators. We assume as usual an interac 

tion Hamiltonian of the Form (8), namely 

+ 

(53) HR~= ~Y- ~ (A+Bi - ABe) 
l 

Hence also in this case the reduced statistical operator 

oscillator obeys the ME(27) that reads 

d~ 2 
(54) 

of the 

,A] + 

+ ,?C~)A + ~ (  A£I~) ,A ~ + A + 

where Co is the renormalized frequency(cfr. Sec.3.1). 

This equatio~ can be suitably mapped into the Glauber diagonal re 

presentation [I0] in which the quantum-mechanical ~ becomes a clas- 

sical-looking partial differential equation. Let us briefly review the 

main properties of this representation [11~. First oF all one consi_ 

ders the coherent states I~> , defined as the eigenstates o9 the 

annihilation operator A: 
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(55) A I ~ >  = cx I ~ >  

The spectrum of the nonhermitian operator A covers the whole complex 

plane. The mean values o£ A and A* in a coherent state are given simply 

by 

= A + (56) <~ 1 A l o < >  ~< , <~I 1o<~ = 

From the physical viewpoint, the most remarkable property o£ the cohe 

rent states is that the mean value o£ normal ordered products £actorize~ 

(57) < , x j ( A + ) ' ~ A ' , , ' - , ~ >  __ < . o < l A - + l , x > ~  < o < J A I  ~<>~ - -  ( ~ < * ) " ~ " "  

This implies that i£ we restrict ourselves to normal ordered quantities 

the coherent states are £1uctuationless. This Feature renders the cohe 

rent states the most"classical" states that one can find in quantum me 

chanics. We recall also that the coherent states least indetermination 

wave packets. 

Now it has been proven [11]that there is a large class o£ statistical 

operators for the harmonic oscillator which can be represented in the 

Following way: 

(5,,) f = 1 , 

where P is a c-number f ~ c t i o n  and 4.Z~ = 4 ( ~ . ~ ) .  a(%*~). 
(58) is the Glauber diagonal representation o£p, which maps the opera_ 

tot ~ into a classical Function, the so-called P-function. This Function 

is real but not always positive, hence it is called quasiprobability 

distribution. The mean value of the normal ordered products (57) is 

simply calculated From the P-function: 
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When the operator f is mapped into the P- £unction according to eq. 

(58), the ME (54) turns out to be correspondingly mapped into the 

£ollowing partial di££erential equation [I~ : 

L)P(~'~'~) ~ ('-" ~ ~) P(,.,,,* ~) 

_ ._ t > ( ~ , ~ ;  ~) .  _ 
ubd, ~" 

Eq. (60) is a Fokker-Planck equation (FPE), as it was to be expected 

a~ter the classical theory o9 Brownian motion. Let us consider the 

solution o£ the FPE (60) when the system is initially in a coherent 

state: 

(6-,) ?(0)= j~o><~ol , P ( ~ , ~ , ' ~ o ) = ,  ~ ; ( ~ , - ~ o )  ~ ( ~ < t ~ ) ,  

i.e. the Green £unction o£ the FPE. 

I£ we neglect the di££usion term (i.e. the second-order derivative term) 

the solution is 

(62) 

(62') ~o~)= ~o e~I ;~'+~' ~' I- f l 

hence 

(63). {1:) = I~,o {L-)> < O<o (t)  I J 

The P-£unction is still a ~ -gunction, which means that the oscillator 

remains in a coherent state during the whole time evolution. The time 

evolution o£ the mean value -as ruled only by the drigt term&(£irst- 

order derivative terms) o9 the FPE -is that o9 a classical damped 
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harmonic oscillator. Note that no 91uctuations arise during the time 

evolution. This is no longer true i£ we keep the dig£usion term. 

In 9act, in this case the solution is 

(64) 
I [ i - 

where, using the 91uctuation-dissipation relation (2@), 

(65) ~= < A+A ~# 

One sees that 9or t >O the p-gunction is no longer a 6-gumction, i.e. 

the oscillator is no longer in a coherent state. The P-gunction broadens 

in time. Initially thre are no 91uctuations, but the di99usion term 

creates 91uctuations which increase in time. On the other hand, the drigt 

terms rule the mean motion, which is still given by (62'). As a last 

point, let us consider the solution (64) 9or t > oo . One 9inds 

~ ~ / 

which can be shown to be the P-gunction Io(lo<~ that cot_ 

responds tO the canonical operator [11J Again one 9inds as expected 

that the system approaches the thermal equilibrium state in the long 

time limit. 

4. The one-mode laser model 

At this point we have all the elements to treat the laser systems 

~2,13,11,9 3 Let start the one-mode laser model o9 us by illustrating 

the Stuttgart school |12,14] 
@ 
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In a laser system we have a resonant cavity with mirrors of re£1ect~%ity 

coefficient R and transmittivity T=I-R. This cavity contains N atoms 

homogeneously distributed in a pencil-shaped sample of volume V=Ld z, 

where L is the length and d I the section. The atoms are assumed to be 

two-level atoms with the same transition frequency CO (homogeneously 

broadened atomic system). We consider only the resonant electromagnetic 

field mode of the cavity, and let A,A + be the annihilation and creation 

operators of this mode which obey the usual boson commutation relations 

Let W(t) be the statistical operator o£ the system atoms+field. The 

time evolution equation for W consists of three different groups o£ 

terms, which describe the dynamics of atoms and o£ the field and the 

interaction between the atoms and the radiation mode ,respectively. Let 

us write concisely 

where (d~V/a~//~ describes the time evolution 0£ the atoms, 

~/d~ ) F the time evolution of the field mode and [o~//d~)A F 

the atom-field interaction. 

Let us consider the three groups in (68) separately. First of all, 

we have N two-level atoms labeled by i=I,2, .... N. According to sec.3, 

the i-th atom is assoeiated with the raising and lowering operators 

~+ t Y q and with the inversion operator F3~ 

These operators obey the angular momentum commutation relations 

+ r , r , -  = + 
(69) PL , ~ , j -- 

As long as we do not consider the interaction with the cavity mode 

the atom~evolve independently o£ one another. Their time evolution 

arises from the free time evolution, the decay which can be purely 
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radiative or due to collision4, and from the pump action that we exert 

on the atoms. Since these decay and pumping mechanisms can be described 

as due to the interaction with suitable reservoirs, we can immediate 

ly describe the dynamics of the atomic system: 

( a w )  '~A 
(7o) ~ -  A -  -~  W .  A A W , 

N 

L = l  

(71b) 

N 

+ 

+ 

t 

Thre are two differences with respect to eq.(40) for the decay of 

the single atom . The first difference is the presence o£ the terms 

containing ~ in (71b), which are the dephasing terms arising 

from the elastic collisions. Furthermore, in (71b) ~ and ~$ 

must be considered as independent parameters because ~ is deter_ 

mined by the decay whereas ~ is controlled by the pump. In particular~ 

laser operation requires ~ > ~ . 

If one neglects the interaction with the cavity mode, the time evolution 

of the atoms is described by the ~ (70). It is easy to solve it and 

verify that the atoms approach an asymptotic situation in which the 

polarization is zero while the inversion o9 the single atom has the value 

(72a) 
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In particular, to get a positive inversion one must have 

The polarization tends to zero with a r&te 

(7eb) & . =  
& +A*~ 

Z 

whereas the inversion tends tO its asymptotic value O ~ 

rate 

& > ~  • 

with a 

For a purely radiative decay ~=0 so that ~i=2 ~ as in eq. 

(47b). For ~=~ 0 one has instead ~Ii < 2~ 

Let us now consider the radiation mode. It is simply a quantum harmo 

nic oscillator oF Frequency ~O It is damped because the photons 

escape From the cavity with a rate 

(73) ,< = c T / ~  

due to the interaction with the exterior oF the cavity, which acts as 

a reservoir at zero temperature. Hence the dynamics oF the radiation 

mode is described by the Following equation (cFr.eq.(54)): 

(74) (otW) -,' ~Z~ g,/~- A~ W' 
o " 7 ~  F --  

(7,a) '~F ~(/ = -i [H ~)~/']-- oo EA+a, W] 

(75b) ([A, wa+l+[Aw, a+]) 

Note that with respect to eq.(54) we write k instead oF ~$ and 

we have a~ =O because the reservoir has zero temperature. IF we neglect 

the interactions with the atoms the time evolution oF the Field mode 

is described by the N~(74). By solving this ME (e.g. in the Glauber 

representation) one Finds that the mode approaches the vacuum state with 
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the rate k, as it must be. 

Finally we consider the atom-Field interaction. In the dipole and rota 

tin@ wave approximation, the interaction between the atom and the cavity 

mode is given by theHamiltonian 

(76) e. r 

where 

(77) 

is the coupling constant 

and ~ is the modulus oF the dipole moment oF the two-level atoms. 

~ is the wave vector oF the radiation mode and X~ the position of 

the i-th atom. ThereFore one has the interaction term For the dynamics 

oF w(t) 

(TS) • t ,  ~ ~ , 

In conclusion ~rom (68),(70),(74),(78) we obtain the ME that Fully 

describes the dynamics oF the coupled system atoms+cavity mode 

where the terms on the r.h.s, are explicitly given in (71a,b),(75a,b) 

and(78). T~is ME is the one-mode laser model Formulated by Weidlich 

and Haake [14~.TH~,~,~ has been recently generalized by BOniFacio and 

Lugiato [15] in order to take into account the possible presence of 

an external coherent Field which/;~ injected into the cavity. This 

generalization is necessary to treat the so-called optical bistability. 

In Fact, let us assume that a coherent monochromatic Field enters into 
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the cavity and that this external field is per£ectly resonant with the 

atomic system and the cavity. It can be shown that the effect of the 

external field can be taken into account by simply changing the term A F 

which describes the damping o£ the cavity mode, Precisely one must put 

(8o) 

AFW= ~ A - % ~  , W ( A - ~ o ~  * 

-r A-~o~ W, A - ~ o e  • 

If we put ~o =0 in (80) we recover (75b). Furthermore, if we neglect 

the interaction with the atoms so that the dynamics of the cavity mode 

is described by the ME (74) and we sol~¢it by using (80) instead of 

(75b), we find that the mode does no longer approach the vacuum state 

I Q> <01 but the coherent state ]~o ><~o| of 

the external laser field. This explairsthe Generalization o£ eq.(75b) 

into(80). 

As a last point in the construction of the one-mode laser model, we 

pass to the interaction picture so that we get rid o£ the free time 

evolution terms. In this picture the ME reads 

where now 

A~ 
(82) 

In  the f o l l o w i n g ,  we drop the index ( I )  everywhere.  

We shall treat the model (8~) first at the s~miclassical level and 

secondly at a fully quantum statistical level. At both levels we are 

interested in studying the behaviour o£ the macroscopic observables of 
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our system, which are essentially the £ield, the total inversion o£ the 

atomic system and its macroscopic polarization. The Field is associated 

to the operators A and A + , the total inversion is associated to the 

collective inversion operator 

N 

(83) R3 = Y-  

and Finally the macroscopic polarization is associated to the collective 

dipole operators 

(84) ~ + --.= ~r" l/" ± 
~=i 

By means o£ the definitionS(83),(84) we can rewrite 

(85) 

A very remarkable Fact is that these macroscopic operators obey the 

angular momentum commutation relations 

(87) 
! 

5.- Semiclassical treatment oF laser and optical bistability 

From the ME(81) one can derive the time evolution equations For the 

mean values o£ the macroscopic quantities R ~ ,R 3 ,A ,A e . One obtains 

a system which is not closed because it contains mean values oF products 

o£ these quantities. However, in the semiclassical approximation in 

which one neglects all the £1uctuat~ions and correlations, all the 

mean values oF products Factorize into the products o£ mean values. 

Thus, by introducing the c-number variables 
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(88) 
A = <A> = T, (Aw) A ÷ A ÷ =< > , 

R -+ " R 3  = <R~> = < R±> 

one gets the following closed system o9 equations(dot=derivative with 

respect to time) 

0 

(89a) ~" ----" ~ ~ i ~3 -- ~ ~- P 

1 

(89c) = R--~ A-o(o 

The equations £or ~+ and A + are complex conjugates o£ eqs. (89a) 

and (89c), respectively. 

In each equation we recognize a coherent interaction term and an in 
m 

coherent damping term. on the basis o£ eqs. (89a -c), we shall treat 

two dif£erent phenomena: the laser and so-called optical bistability 

(OB). 

5.1- The laser 

First we analyze eqs. (89) in the stationary situation, which is also 

the asymptotic situation that the system approaches 9or t > oo .From 

eqs. (89a,b) one obtains the £ollowing expressions o£ polarization and 

inversion as £unctions (~ the £ield: 

1 Ug~ ± + l x l  ~ ' ~ ~ i + l ; ~ / "  ' 

where x is the normalized £ield amplitude 
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I£ we substitute (90) into the £ield equation (89c), we obtain the 

equation that determines the stationary values o£ the £ield variable:X: 

K ( X -  7) =. 0 
~j. ~. + Ix I ~" 

where Y is the normalized amplitude £or the incident £ield 

(93) 7 - 

Let  us a n a l y z e  eqo (92) s e p a r a t e l y  i n  the cases o£ the l a s e r  and o£ 0B. 

In the case o£ the laser c~o=0, which implies ~=0. Hence the stationary 

equation can be written as it £ollows: 

~T ~ + I x l  z 

where 

is the threshold inversion per atom as we show below. Clearly eq.(94) 

has two solutions. The £irst is the trivial solution x=0, which means 

~=0 , i.e. no radiation emission. Substituting the solution X=0 into 

/ eq.(90) we obtain ~0 and R 3 = 0~ 2. . The other solution is 

I×I~=(~/~T) _± . T h i s  solution exists provided o-/o--'~ 
i.e. 

(96) o~ 9 o~T 

Note that the phase is le£t completely arbitrary. For this solution 

there is radiation emission, i.e. the laser is operating. Now a stati0 

nary solution is physically meaning£ul only i9 it is stable. The sta 

bility can be checked by means o9 a standard linear stability analysis. 

~- ~ N/;) Let us consider the trivial solution (A=0, R=0, E~=CF 



82 

One introduces the deviations o£ the macroscopic quantities Prom their 

stationary values 

(97) z& F<- = R- A P, = R o-N A A - A 
/ 3 3- Z / 

Substituting (97) into (89) and keeping only the terms which are linear 

in the deviations, we get the linearized system 

(98a) Z~Px- - crN~ AA -cyAR- , 

The system (98) admits solution o£ exponential £orm 

( , ~ )  A Rs (t:) 
& A (~) 

--_ & 

,k [ -  A R-(o) t 
A R 3 to) 
A A (o} 

I£ we substitute ansatz (99) into the system (98), we obtain a linear 

algebraic homogeneous system, which has nontrivial solutions i£ the 

determinant o£ the matrix ~ o£ the coe££icients vanishes, where 

(100) l]v~ 

A , &  o - 

o A,+ 6, o 
o ; ' ,+K 

From the condition det~J=O it £ollows an algebraic equation for ~ -- 

the characteristic equation- which determines the possible values o£ 

the complex constant~ . According to (99), the stationary solution is 

stable iF a~d only i£ the real part o£ ~ is negative £or all roots 
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o£ the characteristic equation. 

stic equations are 

NOW the solutions o£ the characteri 

(IOIa) Ai = -- ~h 

3 

A i and~zare always negative, whereas ~>O iF O-~.~-here£ore the 

trivial solution is stable only i£ O~< O~T . Quite similarly, 

one can analyse the stability o£ the nontrivial solution. One Finds that 

it can become unstable only For very high pumping, and in this case, 

according to the values o£ the parameters, one Finds the so-called 

Lore~z instability [16] or a selF-pulsing behaviour [17] . In 

conclusion, i£ we increase the pump parameter O ~, me have First the 

trivial solution which is stable, until in correspondence to the thre 
m 

shold ~=~it becomes unstable and the laser begins to operate. Here 

one Finds a discontinuity in the derivative oFIxI~vs.O ~, so that the 

behaviour o£ the laser in the threshold region closely resembles a 

2nd-order phase transition ~18] 
L ~ 

5.2- Optical bistability 

In thiscase the optical cavity is Filled with ~arely absorbing material ) 

i.e. we do not pump the atoms (~=0). Hence the pump parameter O- 

(eq.(72)) must be put equal to -1. The problem o£ OB is the Following: 

a coherent monochromatic Field n o enters into the cavity which is Filled 

with absorbing resonant atoms. Part oF this light is transmitted by the 

cavity, and we want to Find the behaviour o£ the transmitted Field as a 

function o£ the incident Field. The stationary equation (92) links the 

transmitted Field A and the incident Field ~0, since x oc A and y oc~ o 

For definiteness, we take d o real and positive, so that also y is real 

and positive. It £ollows that also the solutions x o£ eq.(92) are real 

so that we drop the modulus symbol. Introducing the parameter 
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C 

_i 

q 

2K 

We have t h e  s t a t e  equation ~5] 

2Cx 
( o5) 7 = x + 

i+X z 

Eq.(IO5) expresses the incident Field as a Function o£ the transmitted 

Field. Actually we want just the inverse Function. Let us first analyse 

the functiony(x) defined by the state equation. We ~aVZ a linear term 

and a nonlinear term which arises ~om atomic cooperation and in Fact 

is proportional to the number o9 atoms. In the case o9 an empty cavity 

this term vanishes, so that eq.(105) reduces to y=x, i.e. transmltted 

9ield=-incident Field as it is well known. On the other hand for a ca 

vity Filled with absorbins atoms just the nonlinearity o9 eq.(IO5) 

introduces all the interesting Features. Let us consider this function 

for large and For smallx. In the First case, eq.(IO5) is approximated 

by y=x, i.e. the empty cavity solution. The atoms are completely sa 

turated so that the medium is completely transparent. In these condi 

tions, each atom interacts with the incident Field as i£ the other 

atoms would not exist: this is the noncooperative situation, and 

in Fact in this case one can prove that there are no correlations 

between atom and atom. For small x, eq.(105) is approximated by 

y=( 2C+1)x so that we obtain a linear relation. But now the linearity is 

not due to the lack of atomic cooperation but to the Fact that we are 

considering a system driven by a weak external field so that the respon_ 

se is linear. In this situation For C>> I the atomic cooperation is 

dominant, and in fact one can prove that one has relevant atom-atom 

correlations. 

The form of the curve y(x) between the two linear asymptotic behaviours 

is qualitatively different in the two cases C<4, C>4, as shown in 

fig. I. For C<4 y is a monotonic Function of x so that there is no 

bistability. However, also in this case there is a very interesting 
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phenomenon. In fact, if one plots x vs.y as in fig. 2, one finds a 

portion o£ the curve where dx/dy > I, so that a slow modulation o£ the 

incident field gets amplified. In these conditions, the system behaves 

as an optical transistor [19~ . For C=4 the curve has an in£1ection 

point with horizontal tangent and finally for C ~ 4 the 9unction y(x) 

has a maximum and a minimum. Therefore in the latter case there is a 

suitable range o9 values o£ y,i.e, of the incident field, in correspon_ 

dance of which we find three different va]ues of x,i.e, o£ the transmit 

ted £ield. The points which lie on the pa~t with negative slope are 

unstable. In fact, these curves are analogous to the Van der Waals 

curves for the liquid-vapor phase transition, and this part is analo 

gous to the portion of the Van der Waals curve with negative compressi_ 

bility. Here a decrease of the incident field would imply an increase 

of the trnsmitted field, which is impossible. Hence in the case C ~ 4 

we have a bistable situation, with a solution x d in which the atomic 

cooperation is important and a solution x 3 in which atomic cooperation 

is negligible. Therefore we shall call x~ "cooperative stationary 

state" and x 3 "one-atom stationary state". If we exchange the axes 

to have a plot o£ transmitted light as a function o£ incident]i%k~ (~i~ 3) 

we obtain immediately a hysteresis cycle. In fact, if we start from 

low values o9 the incident field, we see that the transmission is very 

low& Nearly all the light is re£1ected. Increasing the incident 

field the transmitted field increases very slowly until at a certain 

point the incident light increases abruptly and nearly all the incident 

light is tr~smitted. Coming back, the transmitted field decreases 

continuously also when we cross the previous upper threshold, until we 

reach another lower threshold, where the transmitted light suddenly 

jumps to the low transmission branch. 

The presence 09 hysteresis effects is tNpical o£ first-order phase 

transitions in equilibrium systems. In fact, OB is prototype o£ first 

order phase transitions in quantum optics, exactly as the laser is the 

prototype o£ 2,~-order phase transitionS.This analogy between OB and 

first-order phase transitions will be further developed when we shall 

treat the photon statistics o£ the transmitted light. 
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5.3- Transient behaviour: the adiabatic elimination 

Until now, we have treated the semiclassical equations (89a'c) at steady 

state. The treatment o£ the tr.~ansient, i.e. of the approach to the 

steady state, is much more complicated. In Fact, the solution o9 the 

nonlinear system (89) can be Found only numerically. However, it must 

be mentioned that the semiclassical equations can be simplified in 

some limit situations which are commonly Found in quantum optics, na 

mely when the damping rates which appear in these equations are such 

that either k << ~l, $11 or conversely k >> 6~, ill .The 

First situation is typical o£ the laser, and in general o9 all situations 

in which the quality of the cavity is good. In Fact, k is proportional to 

the transmission coefficient T, so that if the mirrors have a good re 

91ectivity k can be made much smaller than ~i and ~ . Therefore we 

shall call this case "good quality cavity case". The opposite situation 

is typical o9 super£1uorescence [20] in which the cavity has no mir ~ 

for at all. We shall &~all this "bad cavity case". 

In the latter case (k >> ~I , ~11 ) the atomic variables vary much 

more slowly than the Field variables. By integrating the Field equation 

(89c) we obtain the expression o£ the Field as a Function o£ the ato 

mic variables 

Now let us consider times t>> k -i where k -i characterizes the 

Field time scale, so that the First term can be dropped, and note that 

in the integral the term R [~d) varies on a different time scale, 

namely ~t| . This is just the same type o£ situation 
%;J. 

that we have discussed in detail in illustrating the markoF£ approxi_ 

marion (see the passage From eq.(22) to eq.(25). Hence performing the 

markoFF approximation on eq. (106) we obtain the result 

K 
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Now we can replace this expression into eqs.(89a,b), obtaining the re 

duced system o£ two differential equations for the atomic variables 

only 

(lO8) 

R =2  oR a + R-R3 
K 

,~, ~+ ~, £ 

K 

From eq. (107) we see that the field variables follow adiabatically, 

i.e. without retardation, the motion o9 the atomic variables. Hence 

the approximation (107) is called adiabatic elimination o£ the Field 

variable. As we have seen it coincides with the markoff approximation. 

Note that there is a quicker procedure to perform the adiabatic elimi 

nation. In fact, if we consider the Field equation, i.e. the equation 
% 

for the"fast" variable, and put A (t)=O we obtain eq.(IO7) directly. 

Similarly in the good cavity case K<i~&, $II we can adiabatically 

eliminate the atomic variables. Thus we put R =R~ =O in the atomic 

equations (89a,b) and substitute the stationary expressions oF R- 

and R 3 into the Field eq.(89c), obtaining the differential equation for 

the field variable only 

I 

(lO91 X : - g (x-y - o ~ 

KS~ ±+X ~) 

6.- Quantum statistical treatment o9 laser and optical bistability 

In this section wm treat the one-mode laser model on a Fully quantum 

statistical level,i.e, considering fluctuations and correlations. TNe 

ME (81) cannot be solved exactly even at steady state. However, the 

situation is considerably simplified in tNe two limit cases o£ good 

cavity and bad cavity. Let us consider the good cavity case 

(see [21a-c] for the laser; u jr22] for OB) 
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In this situation, we can consider the atomic system as a reservoir 

for the radiation field. In fact, the most ~ important feature is to 

have fast relaxation rates with respect to the system. There£ore we 

can apply the method illustrated in sac.2 to derive from the one- mode 

laser model (81) a time evolution equation for the reduced statistical 

operator o9 the field only 

(111) ]0 = r"~F A ~(/ ! 

where Tr A means partial trace over the atomic Hilbert space. We intro_ 

duce the operators 

(112) = K- _+ ~ ~ 

in order to write the interaction Hamiltonian (76) in the simpler form 

N 

A 5- + )  

These operators satisfy the same commutation relations(69) as the old 
+ A 

operators and the expression o9 the operator /\Ain terms o9 J 

~j± is ~he be/ore as by inspection o£ eq.(71b). same aS one sees 

We recall that the method described in sac. 2 consists o£ deriving 

£rom the starting equation a hierarchy o9 equations for the reduced 

statistical operator £ 09 the subsystem and for some atom-field 

correlations, the simplest o£ which are W/(±) (~) = Tr A C~(~)) . 

In view O£ the applications o9 sac.3, we truncated the hierarchy usin s 

a procedure which was based on the assumption that the reservoir was 

not appreciably disturbed by the interaction with the subsystem. 

However, in the case o9 the laser the reservoir, i.e. the atomic 

system, is notably disturbed by the strong interaction with the £ield. 

Theregore this truncation procedure does not work for the laser. 

~ence we adopt another truncation method, which is the following. In 

the interaction between the field and the atoms, we consider only those 

processes in which the field interacts with one atom at a time and 
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neglect those higher-order processes ~ wilich the field interacts with 

two or more atoms simultaneously. This assumption amounts to consider, in 

our hierarchy, only the auxiliary quantities which involve a single 

atom. More precisely, we consider only the operators p / ~//-*) , 

W;I+-)--~A (~i'+~-~/l ' ~ --~A (P£ Q+~/J On the other hand 
byj, C+ - ) "~ - ' we neglect quantities such as "'~ --~a I F£+ ~J ~/) ' ~ ~= j ' 

which contain the variables of two different atoms. Keeping into ac 
c-~ ]q- ~E-+J ,+-~ 

count the relations ~i ~- [W, '(÷, and . = p -- V~i , 

we derive the following closed system of equations for f ,~/.I-i-I and 
C+ -) I 

W~ : N 

+ i A ,  W,! +' , 

(114b) *)w<" { +<+-' +7 <>~L- - " -  ~ + ~  a + <  _ ( j o _  . A , 

(114c) <~w;-L CA,-~-,,> w<<+-'+~_,, :+o-- 
oil- 

_ _  { A W / " _  

The physical meaning of the three operator equations (114) is transparent 

because there is a straightforward connection with the three semiclas 

sical equations(89), expressed by the relations 

(1~5) ~ < A > = ~ - P ~ - ( A j o )  , <}-+>-~~-+), , <~+~>=~W '+-~; . 

to obtain a closed equation £or f , by virtue o£ (110) we perform 

the adiabatic approximation( which as we have seen in the previous 

section, is equivalentto the Markoff approximation) by setting 

&W ,÷, = d~/;+l~'-'- = . 

/~ - 0 Furthermore, since /~F is proportional 

to k we neglect ~FW with respect to ~&W (÷) in eq. (114b) and A F ~(@-1 
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Hence the system(114) takes the Form 

in e q . ( 1 1 4 c ) .  

(116a) ~P -- -A- ~9 * ~. N ([A~ W{-)] -- [A ~Y'/[+) ] ) 
4~ F 

(116C) 0 " - -  --(~)I ~/('+-] "146-" - -  W(+)j¢ ( - )  (A A 

where we have taken into account that the atoms are identical, so N 

that we have dropped the atomic index i everywhere and replaced ~_ 

by N. 
I£ we substitute For W(+)in eqs.(116a,c) the expression obtained From 

~+ -) 
eq.(116b), we are left with the Following system For f and W 

+Im(~ A ]  A('[ ~'w A*]] 

__ 24 (p 

- A A* W ~÷-)  - W~*-~AA*J  . 

To eliminate W(+-), it is suitable to translate the operator equations 

(117) into partial differential equations by using the &lauber diagonal 

representation. ThereFore we associate to the reduced statistical opera 

tot ~ the Glauber P-distribution(58), and likewise we associate to 

W (-~') a Function ~ : 

(118) J 4/c-'-'~ = 4~,~ lu, > <,~ I V/(o,,x*) 
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%;ith the change o£ variables 

~f 
(119) O~ --___ y" 

eqs.(117) are mapped into the £ollowing c-number equations: 

( 120al 

I- ( v -  o~o cos 
0~ ~ Or 

& v ,0~ Or 

Of 

(i~o~) o : - d ,  W(~.,t, L) -,- &, -.z+~ P(~.,,p,t) 
2 

+..~. t:z~~Pfr,¢,L-)- #~-~ t~(,-,v,,~j. ~- J 
& <J~- 

Fromeq.(120b) we obtain 

W C~',,t, ~) . 

(121) 

Ns ~Ns J~. J t N~ 

where 

(122) 

is the saturation photon number (N& >> I). 

Finally by substituting (121) into(12Oa)we obtain the required equa_ 

tion £or the P-£unction o£ the laser mode: 

(123) I' " Ok = T -  Kh .Jr' 
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• i . o - +  P ( ~ . , f , , ~ : )  
Ns 

Note that eq.(123) gives a strong coupling treatment o2 the laser. 

In £act, since N s is inversely proportional to ~I I it contains 

the coupling constant at all orders, contrary to what occurs in the 

master equation(27), which describes the system-reservoir interaction - 

at second order in the coupling constant. A weak coupling treatment 

is ~nable to describe the laser above threshold and OB. 

Equation (123) is very complicated owing to the inverse operator. In 

£act, i£ we expand~ this operator into a geometric series as it £ollows: 

]- ' ;(  T. 
Ns 

(124) 

we realize that eq.(123) contains derivatives o£ all orders in the 

variable r. The exact stationary solution o£ eq.(124) can be however 

exactly calculated, as it is shown in [21b]. However this equation can 

be simpli£ied. In £act, since NS is a very large number, we can neglect 

all the terms o9 the expansion(124) except the £irst two. Introducing 

the scaled variable 

( 1 2 5 )  X - -  V" / ~  

eq.(123) is very well approximated by the Fokker-Planck equation 

0~- x (O× ~, ~A  
) 3 , 

x +JY 7 ~  

J ~*x ~ ~ ~ 
X W- 
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where 

(127) ~ = 

is the diEgusion constant(q ~< I) 

6.1- Photon statistics oE the laser 

In the case oE the laser, one has y=O(no external Eield) and by recalling 

(95) theFPE(126) takes the form 

(128) j / :  x Ox ~ ~-+x ~ ax 
l 

The dri£t term is immediately linked to the semiclassical stationary 

equation(94). On the other hand we note that both the amplitude and 

the phase di££usion coe£ficients tend to zero £or x--~oo i.e. £or high 

intensity. This 9eature has two basic physical consequences £or the 

laser:l) the extreme smallness o£ amplitude £1uctuations, which implies 

that the photon statistics in the laser correspond pratically to a 

Poisson distribution and 2) the very slow di££usion oE the phase,which 

implies that the laser light is nearly monochromatic. These two prope~ 

ties give the "coherence" o£ the laser light COl 

In the threshold region, i.e. £or °~---~ °~T a one has that x a~< 1 i 

so that one neglect x I with respect to unity in the diEFusion terms and 

perEorm the socalled "cubic" approximation in the drigt term 

~.~ ~ - x  ~ ~'~_ 
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recovering the well-known Risken equation [231,which has been the £irst 

FPE considered £or the laser 

Plx,,~, ~)+ p(~,~,t). 
x ~ OF' 

To obtain the photon statistics o£ the laser at steady state, we calcu 

late the stationary solution o£ the FPE. In this case 3~/0~= Or/DF--a 
The result can be written in the £orm 

where 

(131) 

is a normalization constant and 

~.,o._, ~. ( i ) x - f l  
~T  i 4 " x  2" i + ~ . ~  ~ 

~-- • i ---~ ~--- x 

+ i-~- °~ 
4 z ~T 

The £unction V(x) plays the role o£ a generalized £ree energy ~or this 

system £ar £rom thermal equilibrium. T~e maxima o£ the distribution 

£unction coincide with the minima o9 the £ree energy. In turn, the mi 

nima o£ V(x) coincide with the semiclassical stationary solutions as 

one sees from (131). 
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Both ~k and V are functions Of x ~ for a given value of the pump parame_ 

ter O'. In the case O~<~T i.e. laser below threshold, the free energy 

has one minimum at the origin, and correspondingly the P-function has 

the exponential behaviQur which is ~ypical of blackbody distribution 

(state I in fig.4). Above threshold, i.e. ~ > O~ ! the free 

energy has one minimum in correspondence to the semiclassical value of 

the intensity. Accordingly the P-function has a Gaussian-like shape 

(state 2 in fig. 4). Well above threshold, the peak is so narrow that 

it pratically coincides with a ~ - function. Hence such a P-function 

corresponds to a coherent state, i.e. to a Poisson photon distribution 

DO] . On the contrary, the P-function below threshold corresponds to 

a Bose-Einstein photon distribution. 

6.2- Photon statistics of ~,smitted light in optical bistability 

In this case O'= -1, and using definition (104) the FPE (126) becomes 

K J + 3 I 

P(× L)+----× i+x 

The amplitude drift term is clearly linked to the state equation for 

OB (105). Contrary to what occurs in the case of the laser, in the case 

o90B the stationary P-function depends on the phase. ~n fact, the in 

cident £ield has a well defined phase that we have chosen equal to zero 

for definiteness. T~e phase of the t~ansmitted field is equal to the 

pha~ of the inciden% field, with small fluctuations around this value. 

We cannot find the stationary solution of the FPE (132) exactly. 

However, the amplitude distribution can be calculated with excellent 

approximation as it follows. One can show that the phase fluctuations 

have a negligible influence on the amplitude distribution. Thus we 
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drop the phase di££usion term. This amounts to assume that the phase o9 

the transmitted £ield is strictly locked to the phase o£ the incident 

£ield, which is zero. Accordingly we put ~ =0 in the remaining terms of 

eq.(132), obtainin@ the 9ollowin~ FPE at steady state £or the amplitude 

distribution 

.zCx x~" t (~33) o- K a x x - 7  +- ÷ q P~ Cx). 
x ix  i + x  ~ C~-+ x~) 2 

The solution is 

where 

(~35) 

i÷X ~ X 

×-7+ ..... 
i+X z 

×* + 
& x 

A@ain the maxima o£ the stationary distribution ~ coincide with the 

minima 09 V Z and in turn the maxima and the minima o£ Vycoincide with 

the stationary semiclassical solutions. Fig. 5 shows the shapes o£ the 

£ree energy and o£ the distribution 9unction £or di££erent values o£ 

the incident £ield y. For the values o£ y 9or which one has only one 

semiclassical solution, the potential has a single minimum and correspon_ 

din@ly the probability distribution has a sinsle peak. On the other hand 

£or values o£ y £or which one has three stationary solutions, the poten_ 

tial has two minima corresponding to the stable solutions and one max 

imum correspondin G to the unstable solution. Accordingly the distribution 

has two peaks. Crossin s the lower bistability threshold:, the distribu 

tion develops a second peak until at the upper bistabil:i~y threshold, the 
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£irst peak disappears and we get again a one-peaked distribution. In Fi~ 

6 the semiclassical stationary solution is compared with the mean value 

o£ the £ield. The mean value coincides with the semiclassical solution 

everywhere except where it jumps £rom the low to the high transmission 

branch o9 the semiclassical solution( transition region). This behaviour 

clearly resembles the 9irst-order phase transitions in equilibrium 

systems. Figure 6 gives us essentially a generalized Maxwell rule 

However this rule does not coincide with that O£ equilibrium thermodyna_ 

mics, which prescribes to cat the semiclassical curve in such a way that 

one obtains two regions o£ equal area. This di££erence arises £rom the 

fact that the amplitude di£�usion term o9 the FPE depends on the £ield 

amplitude ~ I£ this di£�usion term were a constant, we would obtain 

#ust the usual Maxwell rule [22]. 

To end the discussion o£ the photon statistics 09 the transmitted 

light, ~et us consider the £1uctuations o£ the transmitted £ield. 

Fig.7 shows that these £1uctuations are very small everywhere except 

in the narrow transition region, where they are quite large. This 9ca 

ture arises 9tom the 9act that in the transition region the probabi_ 

lity distribution has two peaks o9 comparable area, and the competition[ 
between the two peaks creates the anomalous £1uctuations. 
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A, INTRODUCTION 

With the discovery of the laser principle, a whole new field 

of physics has been opened to experimental as well as theoretical 

research, while well established disciplines in physics gained a 

totally new dimension. The laser had a tremendous impact on many 

fields, as e.g. what may vaguely be characterized as spectroscop~ 

because the laser supplies the long wanted versatile source of in- 

tense and tunable coherent radiation. With its unique properties 

the laser has become a generally used tool in experimental as well 

as applied research. 

But already from the beginning, the laser itself - the principle of 

creating highly coherent light fields through an ensemble of atoms 

which is driven far away from thermal equilibrium by a continuous 

flux of energy through the system - has attracted the interest of 

theorists. It has been - and still is - an intriguing question to 

understand in detail how order is generated from disorder in many- 

body systems far from thermal equilibrium. The transition of the 

laser from a thermal light source through a critical regime to the 

quasi classical coherent state bears a strong analogy to equilibrium 

phase transitions of the second order, with the breaking of a 

continuous symmetry and the phenomenon of critical slowing down. 

Among the processes which have been made possible by the development 

of the lase~ are the various nonlinear optical phenomena which can be 

observed inspite of the weak nonlinear response of matter, due to 

the enormous field intensities available. Most of these devices ope- 

rate only above a certain critical threshold by emitting partially 

coherent light. Below threshold the emitted field has the properties 

of thermal light. This transition is as well analogous to second 

order phase transitions as it spontaneously breaks the rotational 

phase invariance. 

In the last years simple optical devices have been found which can 

operate in different states depending on the history of preparation. 
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The existence of metastable states and the observation of hysteresis 

cycles makes these systems attractive for applications, but they 

are also attractive from a theoretical point of view because of 

their resemblance to first order phase transitions. 

In the threshold regime where these processes become "soft', and 

susceptible to external perturbations, microscopic fluctuations 

which also probe the system are enhanced up to a macroscopic scale 

and become experimentally observable. For a general description 

which should allow to follow the details of these '~hase changes" 

through the threshold regime, a statistical nonequilibrium theory 

has to be developed. 

In this article we want to give an introduction into the basic 

aspects of nonlinear optical phenomena from first principles. We 

start with a brief discussion of the interaction of light and matter 

in order to formulate the language used throughout the paper. The 

principle of the nonlinear field-field interaction which comes 

about through the nonlinear response of gaseous or solid materials 

is discussed on a microscopic level. Here we have the aim to give 

only a qualitative introduction of how these processes can be under- 

stood, but leave aside all quantitative aspects. 

Before discussing the different nonlinear devices with respect to 

their statistical properties, in the last chapter we have inserted 

a paragraph where we summarize some basic tools from the theory of 

stochastic processes. 
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B, INTERACTION OF FIELD AND MATTER 

a) Hamiltonian 

In classical electrodynamics the evolution of electromagnetic fields 

is described by the set of coupled Maxwell equations for the electric 

and magnetic field strength. As long as the charge- and current den- 

sities, which are the sources of the field, can be considered as ex- 

ternally prescribed functions of space and time, the entire theory 

of electromagnetic fields is linear and the principle of super posi- 

tion holds. In terms of the scalar potential ~(~,t) and the vector 

potential ~(~,t), the fundamental field equations can be condensed 

into the variational principle 

~I L(A,~) dt = 0 (i) 

where the Lagrangian L assumes the form 

1 i aA i aA. aA. aA. 
L =__ ~ 1 _ ] 1 dV 

8~ C 2 at at ax i ax i 

1 1 
.T (x,t) A i dV + -- f +-- f ]i 

c 8~ 

a~ a~ 

ax i ax i 

dV- f p (x,t)~dV (2) 

With the special choice of the Coulomb gauge we are left with the 

vector potential ~ as the only dynamical field variable, while the 

scalar potential ~ follows without retardation the changes of the 

charge distribution in a quasi static way. 

Introducing the canonical momentum associated with the field 

through the relation 

~L 1 aA. 
~ = - ~ (3) 
l ~. 4Kc 2 at 

1 
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we find for the free field Hamiltonian H the following expression: 

1 @A k ~A m 
H = 2He 2 SHin i dV + -- S eij k eilm I dV + ~ ~pdV 

8H ~x] @x I 

-- I dv-- I J~A i dV 
8H 8x. @x. c 

l 1 

(4) 

The corresponding Hamilton equations of motion 

8H. 6H ~A. ~H 
l 1 

- - -- and = 

~t 6A i ~t ~H i 
(5) 

reproduce the wave equation for the vector potential ~. This 

equation is linear and contains the sources through the inhomo- 

geneity jT(~,t). If, however, the response of the medium is taken 
T 

into account, the transverse current density j does not only des- 

cribe the given distribution of the external sources, but describes 

as well the distortion of the effective charge densities in matter 

as a reaction on the polarizing external fields. These polarization 

currents in the electronic wave functions themselves follow dynamical 

equations of motion in which the electromagnetic field is the source 

of external perturbation. 

The dynamic time evolution of the electronic degrees of freedom is 

governed by a Hamiltonian H. In second quantization, this Hamiltonian 

assumes the following general form: 

H = J" dV ? + ( x )  
p2 

-- + V(x)) 

2m 
~(~) 

e 2 1 
+ -- I dVdV' 4 +(~) 4 +(x') 

2 1~-~' I 
- -  4(x') 4 (X) (6) 
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where V(~) is the potential of the external forces like e.g. the 

electron nucleus potential and ~+, ~ are the fermion field operators. 

This is the many particle formulation of the isolated atomic system. 

In the presence of the electromagnetic field ~ we have to identify 

the momentum P with the canonical momentum 

h ~) e 
Pj - -- Aj (7) 

i ~Xj C 

and obtain for the general problem of the field-matter interaction 

the following Hamiltonian: 

1 h ~ e h ~ e 
.... - -- Aj) ~+(x) 

H = f dV ~+(x) --2m (-i ~x.j - --c Aj) (~ ~xj c 

+ f dV ~+(x) V(~) tg(x) + J" dVdV' #+(x)~+(~ ') 
e 2 

~(~,)~(~) 

1 
+ 2~c2 S ~i~i dV + -- S dV ~ijk ¢ilm 

8n 

8A k ~A m 

~xj 8x I 
(8) 

For more details see e.g. (1)' (2), (3), (4) This is the most general 

microscopic formulation for this problem which we will use in the 

subsequent paragraphs as a common starting point for the description 

of various nonlinear optical phenomena. In order to formulate a 

specific problem we will have to specialize the Hamiltonian 

(8). The physical information about the special problem in mind can 

be introduced into the theory by choosing a convenient set of basis 

functions for the representations of the fields ~(~) and @(~), ~(~) 

* (~) a k (9) ~+ (x) = E ~k 
k 

+ 
where the operators a k, a k obey the common Fermi commutation rela- 

tions, e.g. 
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+ + 

a k a k, + a k, a k = 6k, k, 

while the electromagnetic field can be expressed in normal modes: 

= u* b + (i0) ~(~) ~ u~ b~ + ~ 

For the expansion of the electromagnetic field - if not a very 

specific geometry is taken into account - a plain wave expansion is 

the most appropriate choice for the complex vector function ~: 

ei~ b + ~, e-i~ b + j) (ii) 

q 

where ~q,j is the normalized basis of polarization vectors subject 

to the transversality condition ~_ j - ~ = O.So far, the electro- 

magnetic field has been considered'as a classical variable. For the 

quantization of the field, this seems to be the most convenient point 

in the general formulation to do so, because we have no longer to 

deal explicitely with the fields themselves but only with a discrete 

b + . The quantized description is set of mode amplitudes bq,j, q,J 

achieved by imposing the condition of local noncommutability of the 

field and the canonical momentum eq. 3. Expressed in the mode ampli- 

, b + tudes bqj qj we obtain the well known Bose commutation relations: 

[bqj, b + ~j~ ] = ~qq' 6jj' , [bqj, b~j, ] = O (12) 

and the free field Hamiltonian assumes the followinq simple form: 

~ .  ~ b + .  b . w i t h  ~ q  = c[q]  (13)  
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For the expansion of the matter fields ~+(~), ~(~) we may use 

different representations depending on the physical nature of the 

problem in question. To give just an idea of what we mean by an 

appropriate choice, we want to indicate a few physical examples. 

i. Free Atoms 

5 ~{n} (~) is a single electron orbital in an effective core po- 

tential characterized by the quantum numbers {n}, which diagonalizes 

(approximately) the electronic Hamiltonian 

1 +i 1 
H = ~ E{n } a{n } a{n } (14) 

{n},l 

The index 1 characterizes the individual atoms. 

ii. Free Molecules 

~ ~{n},v (~,Q) may be identified with the molecular orbitals in 

Born-Oppenheimer approximation, describing the electronic and vi- 

brational degrees of freedom. 

iii. Crystalline Solids 

For the delocalized states in solids an appropriate choice for the 

expansion is ~ ~ ~_ (x) = exp ikx u~ (x) the Bloch States in 

szngle electron approxlmation in the effective periodic potential 

of the core electrons 

+ ak, (15) H = ~ E k ak, ~ 
~,P 

For narrow band insulators like e.g. molecular crystals, a convenient 

choice for the basis set are the localized Wannier functions 
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~ ~,(~) where ~ is a localization index. 

1 
E ~' + + Z D ( ~ - ~ )  

+ 

H = ~,, U a~,, al, u ~'~''" U ' a~u a I, ( 16 )  

iv. Solids with Lattice Vibrations 

If we expand the electron field operators in Bloch states and 

quantize the harmonic motion of the lattice we obtain the following 

electron-phonon Hamiltonian (Fr~hlich-Hamiltonian): 

H = Z E~ a + + ~ ~ ak~ + Z h~ C C 

+ Z h G + a k (c + c +) (17) ~ ' q ' ~  q a~+~,~ ~'~ -~q 

where the Bose operators describe the quantized motion of the lattice 

This list of possible basis functions ~n is certainly not complete, 

but here we only wanted to give a brief indication of the idea and 

have to leave the details to the special literature (3)' (4)' (5)' (6) 

So far we have derived the Hamiltonian of the uncoupled free motion 

of the electromagnetic field and the atoms and have entirely disre- 

garded the coupling term 

-e h 

Hin t = f ~+(~) (--) Aj (~) ~(~) dV (18) 
mc i ~x 

3 

Introducing the field expansions in one of the representations, we 

obtain the following interaction Hamiltonian: 
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In case (i), for free atoms eq. (16) 

nn ' +l 
Hin t = ~ h ~ a 

nn',q, jl gq~l n 
1 

a b 
n q,j + hc (19) 

with 

nn' v//~h e 
gqjl = i f~  (X-Xl) (eqj 

V~q m 

8 

e-i~ -- ~n' (X-~l)dV (20) 
s ~x s 

where n,n' stands for all the quantum numbers characterizing the 

atomic orbitals and ~llOCalizes the atom number i. 

In case (vi) for Bloch electrons eq. (15) 

~' + 
=Z 

Hin t ~'~'~'~' g~,~ a~+~,~ a~,~ 
+ 

(21) 

with 

2• e ~ , 
= ) --U~ (~) e-i~dV (22) ~' i SU~:q(~) eik~ (eqj 1 3Xl 

g~' ~ V~q m 

The free atom case (i) which is the most elementary example will be 

used in the next chapter to introduce some basic concepts and to de- 

rive elementary examples in order to explain some fundamental pro- 

perties of the field-matter interaction. It is also a realistic 

formulation for gaseous samples at low pressure, where collective 

electronic interactions can safely be neglected and only collisions 

have to be taken into account. An example is the entire field of 

atomic spectroscopy using gaseous samples and its Fourier transformed 

analogue, the "Optical Coherent Transient{ '(7) . 
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The molecular basis (ii) allows to describe transitions in electronic 

states of molecular systems that are accompanied by changes in the 

vibrational motion of the molecules, as it is the case e.g. in 

processes like Raman scattering in molecular samples. 

For the formulation of nonlinear processes in dense solid media 

the Bloch picture serves as a starting point. Parametric three- 

wave mixing and the processes of frequency up- and down conversion 

in crystals lacking inversion symmetry will be described in this 

picture. When optical and acoustical phonons are taken into account 

explicitly, a formulation of spontaneous and stimulated Raman- and 

Brioullin scattering will emerge from the Bloch picture with a 

Fr~hlich type electron-phonon interaction. 

b) Maxwell-Bloch Equations for Multilevel Atoms 

Most of the basic properties of the interaction of electromagnetic 

field and matter can be understood by studying a single multilevel 

atom interacting with a small number of coherent travelling modes 

of the electromagnetic field. The dynamic time evolution of this 

problem is governe d by the Hamiltonian-eq. 14, 19 

H = Z h~q b + b + Z E 1 a I+ al 
q q n n n 

q n,l 

+i 1 + Z h nn' a a b + hc (23) 
n,n',q,l gql n n' q 

where we dropped the polarization index j in order not to overload 

+I a I =pl in the single elec- the notation. The product operators a n n' nn' 

tron Hilbert space have the properties of projection operators and 

are transformed into one another under the dynamic evolution of the 

Hamiltonian eq. 23. For n # n', Pnn' describes an electronic tran- 

sition form level n' to level n, while the expectation value of Pnn 

is a measure of the occupation probability of level n. The Heisen- 



115 

berg equations of motion for the projectors Pnn' assume the 

following form: 

i 
~i = -- [H, pl ] 
nn' h nn' 

i 
[E~ - E 1 ] pl 

h n' nn' 

+ i Z (gqmn Plm, n. _ gqn'm Pln,m ) (b~ + bq) (24) 
m,q 

where n and n' run over the values 1,2...N; N is the number of 

atomic levels considered. A closed system of evolution equation will 

therefore consist at the most of (N'N-I) equations for the atomic 

degrees of freedom. 

For the electromagnetic field, we obtain the equation 

" + = i~q b + + i Z nn' i 
bq q n,n',l gq,l Pnn' (25) 

We notice that due to the projection operator properties of 

pl the equations (24) became nonlinear equations of motion, while nn' 
eq. (25) - which is nothing else than the Maxwell equation in 

quantized form - is still linear as it must. 

We can now draw some elementary conclusions about the field-matter 

interaction by investigating some special cases. 

i. Coherent States 

Let us replace for a moment the operator pl in eq. (25) by its 
nn' 

expectation value pl and assume that not all nondiagonal elements 
nn' 

of this matrix vanish. We further assume that we can neglect in 

eq. (24) the coupling to the field which allows us to solve this 

equation immediately 
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i 
<Pl, n,>t = <Pl,n,>t=O exp- (En - En,)t 

h 

With this assumption, we simulate a classical source for the electro- 

magnetic field and suppress the quantum fluctuations of the atomic 

ensemble entirely. Under this assumption, eq. (25) is integrated 

immediately into 

+ (t).= b + (O) e i~ t bq q + i Z nn' <p~ > 
n,n',l gq, l n' o 

t 
S ei~ (t-t') ei/h (En-En,)t' 

O 
dt' (26) 

and we obtain the formal result 

b + (t) = b + (0) e i~qt + E ~ (t) (27) 
q q q 

where E ~ (t) is a classical function of time which breaks the phase 
q 

invariance in course of time 

<b + (t) > = E ~ (t) (28) 
q q 

if the initial state was invariant under phase transformations like 

e.g. the vacuum state. The corresponding wave function ~(t) which is 

created in this process from the vacuum state, is a quantum-mechanical 

coherent state IE~(t)>. If the external source is coupled strongly 

to the field close to resonance, the field bq, b +q behaves in many 

aspects like a classical electromagnetic field with the energy 

h~q <b+ bq q> = h~ I Eq(t) I 2 (29) 



117 

The expectation value in reverse order 

<b b+> = h~ (IEq(t) I 2 +i) (30) h~q q q 

is almost identical with (29) if IEql2>>l. 

ii. Semiclassical Maxwell-Bloch Equations 

In case of strong coherent electromagnetic fields as indicated in 

the previous paragraph, we may replace the field amplitudes b and 
q 

b + by their expectations values and consider them as classical fields 
q 

In this way we suppress the quantum fluctuations of the fields: 

i 
~i =_ (E 1 _ E 1 ) pl + i Z 
n,n' h n' n,n' m,q 

(g~n Plm, n, - gqn'm Pln,m ) (Eq+E~) 

(31) 

E* = i~ E* + i Z n,n' pl (32) 
q q q n,n',l gq, l n,n' 

We are now in a position where we can take the expectation values of 

the transition operators Pn, n' with respect to an arbitrary initial 

state characterized by the density operator p: 

pl ÷ <pl > = trp pl 
n,n' n,n' n,n' 

and obtain a coupled set of c-number equations. In order not to 

overload the notation, we will drop the angular brackets <> for 

further discussion, keeping in mind that pl is no longer an opera- 
n,n' 

tor. 
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The sum over the field modes q extends only over the small number 

of coherent fields which come into play, while the bulk of the 

q-sum has been averaged to zero. This procedure is not quantum 

mechanically consistent, as we will see later, and a more care- 

ful elimination of this background of incoherent field modes is 

necessary in order not to violate quantum mechanical commutation 

relations. 

A correct elimination of these modes which are not macroscopically 

occupied introduces dissipative terms in the matter equation eq. (31) 

accounting for spontaneous emission. These terms can be lumped to- 

gether with other sources of dissipation, like collision induced 

transition and random phase shifts into effective damping constants. 

Dissipative terms have also to be included in the field equations 

(32) when the imperfect reflectitivity, i.e. the finite quality of 

the optical cavity which has been used as a quantization volume, is 

taken into account. We then obtain the system of generalized Maxwell 

Bloch equations for a multilevel ensemble: 

1 
~i = (i~l,n ,- - )pl n ,+il 
n,n' ,n 

Tn, n ' mq 

( mn pl n '-g~m~ p~ m) (Eq+E~) 
gq, l m, q,± , 

and 

~i = - F pl + Z pl mn pl hc) (33) 
nn n nn n'#n rnn' n'n' + i (Zm, q gq,l mn 

with F = Z Fn, the classical condition of detailed balance and 
n n' ,n 

Tnn , = Tn, n. The field equations read 

i 

]~* : (i~ - ×q) E* + i Z gnnlq, Pn, n' (34) 
q q q n,n' ,i 
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The most widely discussed special case is the two-level system in 

dipol approximation 

nn' = (gn'n ~, nn' 
gq, l q,l ) gq,l = g ei~l 

interacting with a single mode of the field E =E q 

• 1 i +2ige-i~l WIE 
P!12 = (-iel- -- )P12 

T 2 

(35) 

1 
= _ _ (WI Wo ) 1 E~ e-i~l 1 E) (36) ~i + i g(ei~l P12 - P21 

T 1 

1 e-i~l ~* = (i~-~) E + i E g P2i 
i 

37) 

where W I= 1 1 P22-Pll. We have introduced the abbreviations T2=TI2, 

~I_F I I  _ +FI2 , W o--(FI-FI2)/FI+FI2 . The rapidly oscillating terms have 

been neglected (rotating wave approximation) because they only lead 

to minute level shifts. 

These equations are the starting point for a semiclassical model of 

the single mode laser, for optical bistability and other resonant 

coherent optical phenomena I where in lowest approximation the fluc- 

tuation phenomena have been neglected. 

For optically thin samples in an external coherent field, E and E ~ 

can safely be identified with the external field amplitude and can 

be regarded as a given function of time. The coherent response of 

the atomic sample is then governed by eqs. (35) and (36) with 

E = E(t) exp-i~t 

where E is still a function of time varying slowly on a time scale 
-i . These equations are e.g. the basis for the description of 

"Optical Coherent Transients" of two-level systems. The generali- 

zation to multilevel atoms is straightforward. 
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The index 1 which runs over the individual atoms could be dropped, 

if not in general ~i the transition frequency would depend on 1 

explicitly even for identical atoms n due to a nonidentical environ- 

ment or thermal motion which leads to individual Doppler shifts. 

If we know the physical origin and the statistics of the frequency 

shifts, we can introduce the following averaged variables: 

1 
Pq(A) = D-I(A) Z P12 ~ (~i_~ -A) expi~x 1 

1 
(38) 

with 

D(A) = Z 6 (~i_~ _ A) 

1 

which characterizesthe shape of the inhomogeneous line, and obtain 

the familiar Bloch equations in the following form: 

1 
= (-i(~+A) - -- ) P +2ig W ~ e -i~t (39) 

q T 2 q 

1 
= - - (W-W O) + ig (Pq~* e iet - P* ~ e -i~t) 

T 1 q 

(4o) 

W is the difference of the populations in the upper and lower state 

"averaged" in the same way as eq. (38). 

The oscillating atomic polarization P driven solely by the given 
q 

external field amplitude E is again the source of an emission field 

which follows from the Maxwell equation (25) 

b+ i~ b + b + . 12 = - ~ + f D(A) P~ A,t) dA q q q q q lgq q (41) 
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As P is a classical sourcej we conclude from our ~revious con- 
q 

siderations eq. (28) that the reradiated field in this approxi- 

mation is coherent as well. 

The eq. (39) and (40) in this approximation are linear-differential 

equations Which depend nonlinearly on the external field E. The 

basic physical information about this nonlinear response to an ex- 

ternal field can be found by setting the field amplitudes E and 

E* equal to a constant. The eigenvalues z. that govern the dynamic 
(8) 

evolution are determined by the following cubic equation 

ii i I i O = f(z) = (z+ -- ) (Z+ -- )2 + 42 + 4g 2 ]Ei 2 (Z+ -- ) 

T 1 T 2 T 2 

(42) 

The three roots of the cubic equation in general assume a rather 

horrible form and only in special cases reduce to simple tractable 

expressions like e.g. TI=T2=T 

Zl =-{T ' z2,3 = -i 4 ( 2+492JE12) 1/2 (43) 

As the Bloch equation (40) is inhomogeneous, we find a nontrivial 

steady state solution which is assumed asymptotically in the limit 

t ÷ ® (7) 

i i T I 
P~ (t÷ ~) = (i~- -- ) gE*W O /(42+( - )2 + 4g2 ~ IEI2) 

q T 2 T 2 T 2 

(44) 

If we can approximate the field envelope E(t) reasonably by a piece- 

wise constant function, the scope of the above results is already 

sufficient to discuss all the basic optical coherent transient ex- 

periments like: optical free induction decay, optical nutation or 

photon echoes etc. For the comparison between theory and experiment 

where the reemitted field is observed, one has to insert the solution 

of eq. (39) and eq. (40) into eq. (41) where the collective polari- 

zation 
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;D(A) P~(A) dA 

acts as a source for the coherent emission field. The time depen- 

dence of the source is influenced essentially by this averaging 

procedure if the range of integration is large compared to the 

time constants Rez . 
1 

Some rather unexpected and newresults have been obtained just 

recently (9)' (IO) which have been verified experimentally in all 

essential details ill)'" . A brief summary of some recently discussed 

coherent transient effects which facilitate an insight into the 

variety of effects associated with these elementary equations, is 

given in Appendix A. 

Through this paragraph it has become clear that for a great variety 

of experimental situations like atomic gases, molecular samples or 

solids, the basic formulations are essentially identical and only 

the details of the representations are different from case to case. 

The results which have been explicitely formulated here, using the 

language of an isolated atomic sample, can be reformulated in the 

same way e.g. for band to band transitions in solids and, from a 

mathematical point of view, similar results emerge. 
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C, NONLINEAR OPTICAL PHENOMENA 

In the previous chapter we have outlined the basic mathematical 

framework to describe the interaction of electromagnetic radiation 

and matter. To get an introductory insight into this question, we 

have described the nonlinear dynamical response of the atomic de- 

grees of freedom to a given time dependent external field. In this 

chapter now, we want to focus our attention primarily on the dy- 

namical evolution of the electromagnetic fields while the atomic 

polarizations only mediate the nonlinear interaction between the 

fields via the nonlinearity of the generalized Maxwell-Bloch 

equations 25, 24. 

We recall that these nonlinear interaction terms have been of the 

general form (eq. 24) 

( mn pl n' m i + 
Z gq,l mn' - gq, l Pn m ) (bq + bq) 
q,l,n,m 

(45 

Without going into any specific details we can in principle dis- 

tinguish between two different fundamental nonlinear processes: 

i. Coupling through Diagonal Elements: 

Pij ~ (Pii - Pjj) b+ q 
(46 

The nonlinearity is based on dynamic changes in the level population 

induced by the field. 
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ii. Coupling through Nondiagonal Elements: 

For systems with more than two levels, a nonlinearity can be mediated 

e.g. by a quasiresonant nonradiating transition 

b + i+j Pil ~ Pij q 

while for a two level system (j=l) a nonlinearity of this type is 

in general strongly nonresonant and can only be obtained in dipole 
n, n~ 

approximation, g O, when the states involved have no parity. 

We will see that these different nonlinearities will give rise to 

different physical effects. While in a perturbation expansion in the 

coupling constant g the coupling through the offdiagonal elements 

leads in lowest order to a cubic nonlinearity O(g3), the nonlinear 

diagonal response only comes into play in higher order O(g~). 

a) The Idea of the Effective Hamiltonian 

The coupled system of equations which we derived in the previous 

chapter (eq. 24 and 25) describe, under the approximation of negligible 

damping and fluctuations, the interaction of a discrete set of field 

modes with an ensemble of atoms in a quantum mechanical formulation. 

This is a very general description but much too involved to draw any 

immediate physical conclusions. If we realize, however, by 

comparing the different time scales of the dynamical evolution of 

the ensemble that we can differentiate between fast and slow variables, 

it is rather obvious that for the special physical processes of 

interest a simplified formulation can be derived from first prin- 

ciples. 

In contrast to the resonant absorption described above, e.g. eq. 39 

and eq. 40, in most nonlinear optical phenomena the fields and the 

atomic transitions are far from resonance and no appreciable popu- 

lation redistribution is brought about the irradiation even of 

intense fields, and only minute fractions of light intensities are 

absorbed. 
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In this limit we gain a small expansion parameter s=g/~ ._~ithe 
13 

ratio of the dipol coupling constant versus a typical detuning fre- 

quency. On the reference frame of external field oscillations, the 

atomic polarisation is a fast variable which is cQntrolled by the 

slow motion of the electromagnetic field amplitudes and follows its 

evolution adiabatically. Under this assumption we can eliminate 

the electronic degrees of freedom in the equatio~of motion, and will 

be left with a small number of equations for the coherent fields 

alone, which, by the elimination procedure, suffer a nonlinear field 

field interaction. These equations can then be interpreted as the 

Heisenberg equa£ions of motion for the field operators under the dy- 

namics of an effective nonlinear field-Hamiltonian. It is the aim 

of this chapter to derive the effective Hamiltonians for the funda- 

mental nonlinear processes in Quantum Optics. 

As the expansion in the coupling parameter e is at the same time an 

expansion in the field strength <b >,we will therefore obtain an 
q 

effective Hamiltonian which emerges as a power series in the field 

amplitudes b or E, and can formally be written as follows: 
q 

1 
(i) 

H = (~ 6i ~ 3 + Xi j ) E.E. + 4]] i 3 
(2) EiEjEk + (3) EiEjEkEI + Xijk Xijkl --- (48) 

We may identify in a classical way this Hamiltonian with the field 

energy H = ~4 H ED, where we use the standard definitions 

D = E + 4HP and P = X E 

and find that this expansion is equivalent with the definition of a 

nonlinear polarization P or a field dependent susceptibility 

Pi (i)~ + (2) EjEk + (3) EjEkEI (49) 
= Xij ~j Xijk Xijkl 
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In this way the nonlinear atomic response obviously leads to an 

explicit field-field interaction: 

(z) 
x i j  

(2) 
Zijk 

(3) 
Xijkl - 

- gives rise to the familiar linear dispersion relation. 

leads to a cubic nonlinearity which is responsible for 

the three-wave mixing processes in parametric devices, 

as well as second harmonic and subharmonic generation. 

As this term does not leave the Hamiltonian invariant 

under spatial inversion transformations, X (2) is non- 

vanishing only for crystalline samples lacking inversion 

symmetry. 

is responsible for four-wave mixing processes which have 

recently found considerable interest in connection with 

the phenomenon of optical phase conjugation (12)' (13) and 

different multiphoton spectroscopy techniques. A more 

familiar four-wave process is stimulated Raman- and 

Brioullin scattering, and the parametric coupling of Stokes 

and antistokes radiation. 

There has been a great effort to calculate these higher order sus- 

ceptibilities from first principles, to get a feeling of the effect 

which lead to large nonlinearities. 

(n) 
Explicit but enormously complicated expressions for × can be 

found in many original publications and in the standard book on 

nonlinear optics by Bloembergen (14). 

In the following chapters we only want to give an idea of the 

microscopic background of these nonlinearities and how they arise 

in a straightforward way by deriving the field-field interaction 

from first principles, but leaving aside all technical details. 
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b) Parametric Oscillators 

As a first example of nonlinear field interactions, we want to de- 

rive the effective Hamiltonian for parametric processes which give 

rise to parametric up- and down conversion of the incident field 

frequency. Three-wave mixing processes, as explained previously, 

can be observed only in solid materials, due to the requirement 

of lacking inversion symmetry. We will therefore start from the 

field-matter Hamiltonian for an insulator in Bloch-function re- 

presentation (eq. 15) and will keep in mind that the equilibrium 

electron wave function will describe an occupied valence band and 

an empty conduction band. 

It is obvious from the Hamiltonian eq. (15) that the scattering 

processes that give rise to an interaction between three fields 

must be of the following structure: 

p' J 

p valence band 

conduction band 

Now we separate the interaction Hamiltonian into two contributions 

one which creates interband transitions, and one which describes 

intraband scattering processes. We therefore write formally 

H = H ° + l I H + 12 H ' ~ 

where the last part lives from the assumption of missing inversion 

symmetry of the crystal lattice and is assumed to be the smallest 

term under consideration. 
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with the help of the canonical transformation 

k s He-k s H = e (50) 

we can eliminate the interband interaction characterized by the 

coupling constant l I to first order, and obtain, by performing 

the straightforward expansion in kl: 

H = H O + --2 k~ k 2 [S, [S, H~]] + O(I 2 ) (51) 

where s is defined through the relation 

Hu~, = [H o,s] (52) 

Evaluating eq. (52) we obtain for the antihermitian operator s 

cv c v h~q)-i +c v b - hc 
s = Z hgk, q (Ek+ q - E k - ak+ q a k q 

k,q 
(53) 

We insert eq. (53) into eq. (51) and take the expectation value of 

the result with respect to the equilibrium electron distribution 

+ 
a~_,v~ ~ = O a~.,c~ ~ = O 

The term which gives rise to the three-wave interaction reads: 

H = H O- 

kqq ' 

/ ~  3 cc cv  . c v  bq, b + 
n gq gq ,gq ,~ .q  bq q , f q  + hc (54) 

) +q) J 
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For the interaction of three specific modes ql' q2' q3 we obtain 

the following effective Hamiltonian: 

3 
H = Z ~ b + b + h {gb + b b + hc} 

i=l qi qi qi q3 q2 ql 
(55) 

In a uniform medium translational invariance requires quasi-momentum 

conservation q3=ql+q2 

~z 

This Hamiltonian describes a spontaneous breakup of a photon of 

frequency ~3 into two photons of frequency ~i and ~2" For this 

interaction to be efficient, the near resonance condition ~3~2+~i 

is requiredlotherwise the effective interaction g exp i(~3-~i-~2)t 

is averaged to zero, 

In a dispersive medium, this condition is in conflict with the con- 

servation of quasi-momentum k. Media with large nonlinearities, however 

usually are birefringened and momentum as well as energy conser- 

vation can be satiesfied approximately for a special ratio of the 

frequencies ~i and ~2 by choosing appropriate noncolinear directions 

of propagation. 

It is then obvious that the ratio by which the incoming field fre- 

quency is split into the subharmonic frequenciesj is strongly de- 

pendent on the crystal parameters and the geometry. By rotating the 

crystal axes with respect to the direction of propagation of the 

external field or by changing e.g. the temperature of the crystal, the 

ratio of ~i and ~2 can be changed continuously. This aspect is the 

basis for the great practical importance of this effec~ as it allows 

to create Coherent light fields that can be tuned continuously but 

with spectral properties similar to those of the driving laser 

field. 
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The dynamical evolution of the fields under the unitary transformation 

of this effective Hamiltonian eq. (55) can most easily be visualized 

by writing down the corresponding Heisenberg equations of motion: 

i 
b+ =- [S, b + ] 
qi h qi 

(56) 

• = ~ b + b + i~ b + + i c b 
ql ql ql q3 q2 

b + b+ = i~ b + + i g b (57) 
q2 q2 q2 q3 ql 

b+ = i~ b + + i g~ b + b + 
q3 q3 q3 ql q2 

These nonlinear operator equations can only be solved for a number of 

limiting cases where a linearization around some steady state 

solution is possible. For the initiation of this spontaneous breakup 

quantum fluctuations are inevitable. The onset of parametric os- 

cillation e.g. can be studied by disregarding for a moment the 

dynamics of the driving laser field b . We replace it by a classi- 
q 

cal amplitude E exp -i~3t. This assumption is appropriate as long 

as the amplitudes of the fields bq , bq remain small. In the "to- 
,, 1 2 

tating frame where the explicit time dependence of the resulting 

linear problem disappears, the eigenvalues can be written in the 

form 

1 A 
- A ± i (gg* I Ei2 - (_) 2) 1/2 (58) 

11/2 2 2 

where A = ~3-mi,~2. 

For an external field intense enough, i.e. IEi2>A2/4gg~We find no 

longer periodic solutions but exponentially divergent amplitudes, 

indicating a threshold beyond which a new type of steady state 

solution will be observed and where the small signal approximation 

will break down. These equations which we will generalize somewhat 

at the end of the next chapter, together with the equations of de- 
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generate processes discussed there, lay the basis of the quantum 

mechanical as well as classical formulation of parametric inter- 

actions. 

In this course we have chosen not to discuss the classical pro- 

blems like wave propagation in nonlinear media etc., but want to 

focus our attention on the statistical properties of these non- 

linear models. We therefore leave the discussion of optical para- 

metric processes here and come back to this problem only after 

the introduction of fluctuations in the chapter D. 

c) Second Harmonic and Sub-Harmonic Generation 

The nonlinear interaction of only two fields is contained in the 

previous results, when we consider the degenerate case where the 

fields b and b become identical, i.e. photons of the frequency 
ql q2 

e3 decay spontaneously into two photons of half this frequency 

~i=~2=~3/2 , generating thereby the so called subharmonic field. The 

time inverted process is certainly possible as well where from a 

field of frequency ~i the second harmonic frequency of twice this 

frequency is generated. An important difference between these 

processes lies in the fact that the generation of sub-harmonic fiel~ 

is obtained only above a certain critical threshold intensity, while 

second-harmonic fields are generated without threshold and can 

be understood in classical terms. This difference is not only im- 

portant for practical purposes but is also of interest from a 

theoretical point of view. While sub-harmonic generation can be 

described in terms of an instable amplifier which is triggered by 

vacuum fluctuations, second-harmonic generation is analoqous to an o~ 

cillator driven by a resonant external force. These properties can 

easily be derived from the Heisenberg equations of motion for the 

degenerate parametric oscillator. 

The Hamiltonian eq. (55) reduces to 

3 
H = Z h~ b + b + ~ (g b + 

i=l qi qi qi q3 

b 2 + g* b +2 b ) 
ql ql q3 

(59) 
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and we obtain the following set of coupled equations of motion: 

b+ = i~ b + + i q* b 2 (60) 
q3 q3 q3 ql 

b+ = i~ b + + 2ig b + b (61) 
ql ql ql q3 ql 

Eq. (61) describes the parametric generation of the sub-harmonic field 

At this point, we would like to be a little bit more precise about 

the experimental setup used in these experiments, in order to 

complete the equations of motion. We assume that the nonlinear 

medium is contained in an optical cavity with dielectric mirrors 

which allow - depending on the frequency of the fields - some per- 

centage of the light field intensity to leak out of the cavity. The 

external fields, provided by strong coherent laser sources, are 

coupled into the system. We will simulate this coupling to the ex- 

ternal fields by additive source terms, circumventing in this way 

the delicate boundary value problem. 

The general parametric process will then be described by the 

following somewhat more realistic set of equations: 

_ b + t b+ = (i~ql b + + i g b + P1 el~ql 
ql ~i) ql q3 q2 

b ÷ b+ = (i~ ~2)b + i g b (62) 
q2 q2 2 q3 qi 

t 

b+q3 = (i~q3 - ~3)b+q3 + i g~b +ql b+q2 + P3 el~q3 

By merely adding dissipative terms, as we will discuss in the next 

chapter, we loose the quantum mechanical consistency of the equations 

because we have to consider fluctuations as well. If we interprete, 

however, eq. (62) in classical terms, we have not to worry about con- 
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sistency and obtain a real'istic picture as long as the fields are 

not amplified from vacuum fluctuations. 

Depending on which of the previously discussed process we want to 

consider, we will a'ssume for the source terms: 

i. Parametric amplifier: PI' P3 ~ O, P3 >> P1 

2. Parametric Oscillator: P1 = O P3 # O 

3. Second-harmonic generation: P1 ~ O P3 = O 

4. Sub-harmonic generation: P1 = O P3 ~ O 

5. Sub-harmonic bistability: P1 ~ O P3 ~ O 

d) Raman Scatterinq 

So far, we have focussed our attention only on the electronic de- 

grees of freedom, disregarding entirely e.g. the vibrational 

motion of the nuclei in molecules or equivalently the phonons in 

solid materials. Electronic transitions, however, can be accompanied 

5y transitions in the vibrational manifold of states. If in a 

scattering process - which can be visualized as a nonresonant ab- 

sorption and mediate reemission process - vibrational quanta or 

phonons are created or absorbed, the emitted light field will be 

shifted in frequency according to the overall energy conservation. 

This scattering process is known under the name of Raman process, 

when molecular vibrations or optical phonons are involved, and is 

called Brioullin-scattering when acoustical phonons are emitted or 

absorbed. 

We are not going into great technical details here but only want 

to make the basic ideas transparent, by deriving the effective inter- 

actions that are responsible for the Raman and Brioullin scattering 

from first principles. We will do this separately for the vibrational 

processes in molecules as well as for the electron-phonon inter- 

action in condensed materials. 
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i. Vibrational Raman Effect in Single Molecules 

An elementary access to the Raman effect, as it is observed by 

scattering light from gaseous molecular samples, can be obtained by 

simply considering a three level system: 

I 3 
1 

13> 

I1> ~:o 

made up by the electronic ground state n~=O, an electronic ex- 

cited state n', v=O, and a state of molecular vibration in the 

electronic groundstate n, v=O. We will assume that the symmetry of 

the states allows optical dipol transition between state 1 and 2 

and state 2 and 3, while no allowed dipol transitions occur 

between state 1 and 3. 

Using the molecular wave function basis, a first principle des- 

cription will start from the following Hamiltonian: 

+ 
+ ~'v an, v an, v,bq + hc (63) H = Z E a a + h Z gn, n'q 

n,v n,v n,~ n,~) n,n' 

with 

gn, n'q 
2• e 

i -- -- f ~*n,~ -- ~n',~' (eq) l e-l~l dV 
V~q  m ~x  1 

(64) 
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For the simplified problem we have in mind here, this general 

Hamiltonian can be reduced essentially by considering only three 

states Ii>, 12>, I3> explicitly, which interact with only two 

modes of the field, bql, bq2 We then obtain the following 

Hamiltonian 

H = Ho + ~ H I 

3 2 
= Z E [n><n[ + h Z ~ b + b 

n=l n i=l qi qi qi 

+ ~ g2 [2><3[ b + hc (65) + h gl [2><1[ bql q2 

where the identification of the coefficients is obvious. 

By a canonical transformation quite analogous to our previous pro- 

cedure eq. (50), we will eliminate the interaction to first order 

and will obtain an effective Hamiltonian which is of second order 

in the coupling constant gq. For that purpose we define a unitary 

transformation 

= e Is H e -Is (66) 

where I is assumed to be of the order of gi and find to lowest 

order in I 

1 

H = H ° + --2 12 [S,Hl] (67) 
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where s is defined through 

H 1 = [Ho, S] 

It is obvious that the antihermitian operator s can be written in 

the form 

S - 
E2-El-h~q I 

(gl 12><ii bql - g~ 11><2] b ÷ ) 
ql 

h 

+ (g3 12><31 bq2- g~ 13><21 b ÷ q2 ) (68) 
E2-E3-h~q2 

and we find for the transformed Hamiltonian eq. (67) 

2 
b + H = Z h~ b 

i=l qi qi qi 
÷ E I 11><ii + E~ 13><31 

+~ l~><ll b + b +h$* b + b 11><~l (69) 
q2 ql ql q2 

where g is to be identified with 

I E2_EI h h 1 g = gl g~ --~ + 
~ql E2-E3-h~q2 

The effective interaction obtained in this way describes the 

scattering of a photon from state ql into state q2 by the "emission" 

of a vibrational quantum: 
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Formally, this scattering process is identical with the previously 

described parametric three-wave mixing processes, where one field 

operator has been replaced by the polarization operator ]3><i[ 

which connects the vibrationally excited state ]3> with the ground 

state [i>. As this single-molecule problem is not translationally 

invariant, momentum conservation does not play a role, and no 

phase matching condition is required. For an ensemble of independent 

atoms in an optical cavity e.g., this can be stated somewhat 

differently. In each localized molecule the'fields ql and q2 will 

create an oscillatory offdiagonal element P3,1 = ]3><1 I with a phase 

retardation of exp i (~I-~2) E1 where E1 is the localization of the 

i th molecule. In this way a standing "polarization wave" is created 

which picks up the difference in photon momenta(q2-ql)h. 

In the derivation of the effective scattering Hamiltonian, we have 

stopped at this intermediate step to point out the formal analogy 

to the parametric processes. Physically, however, there is a drastic 

difference due to the different origin of the coupled fields. One 

important difference is the fact that while the electronic tran- 

sitions are driven far from resonance, the vibrational transition 

is driven on resonance or at least close to resonance, and the 

damping of this mode comes into play determining the linewidth 

of the scattered field. 

If we consider the damping of the polarization 13><1[ explicitly, 

we can eliminate the atomic degrees of freedom and obtain equations 

of motion for the fields alone. As we have to include the damping r 

of this resonant process, we can not expect that this interaction 

will be of Hamiltonian form. 

We eliminate the polarization [3><1] adiabatically by assuming that 

this mode is strongly damped: 

r 

]3><1] = (E 3 -E 1 - hm I + hm 2 + iF) -I ~ b + b (n I - n 3) 
ql q2 

(70) 

We insert this algebraic relation into the Heisenberg equations of 

t motion for the two modes bql b and obtain 
q2 



b+ = ie b + - iA b + b + b 
ql ql ql ql q2 q2 
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b+ = i~ b + iA* b + b + b (71) 
q2 q2 q2 q2 ql ql 

where the effective coupling constant A assumes the form 

A = gg* (A - iF)/(A 2 + F 2) (n I - n 3) 

with ~A=E2-EI-h~I+fi~2 and ni=thermal population of level i. 

The real part of A leads to a renormalization of the frequencies and 

is not of importance. The imaginary part gives rise to Raman Scattering 

From the explicite appearance of the equation (71)it is obvious that 

they cannot be interpreted as the equation of motion of an effective 

Hamiltonian. This is not surprising, however, because we have broken 

the time invariance of the process by introducing dissipation. This is 

also easily understood in physical terms when we rewrite the equation 

(71) for the case of resonance and ni=I, n3=O: 

gg* 

b+ = i~ b + - -- b + b + b 
ql ql ql F ql q2 q2 

gg* b + b + b (72) b+ = i~ b + + -- 
q2 q2 q2 F q2 ql ql 

The Stokes photons are created with a rate proportional to the laser 

intensity, while the laser field is depleted by the effective inter- 

action, b + b + b + b is a constant of motion. 
ql ql q2 q2 

ii. Raman Effect in Solids 

In solid materials, light scattering can be associated with the 

emission or absorption of optical phonons. This process can be 

understood as the sequence of a nonresonant band-to-band absorption, 

emission or absorption of a phonon in the optical branch of the 

phonon dispersion relation, and recombination back to the valence 

band. If the phonon is created in the acoustical branch, the effect 

is called Brillouin Scattering. These processes are formally very 

similar; from an experimental point of view, however, there exists 
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a tremendous difference between these two effects due to the 

different dispersion relations of optical and acoustical phonons. 

While momentum conservation in these scattering process is easily 

satisfied for the dispersionless optical branch, the acoustic 

dispersion relation ~p~ = v q with the sound velocity v does not 

allow to satisfy momentum and energy conservation simultaneously 

for phonon frequencies that exceed a critical value of 

v 
c 

~Ph > ~Ph = 2~- (73) 
c 

where ~ is the frequency of the incident field. 

We will briefly derive the corresponding effective Hamiltonian, 

starting from the Bloch picture of the electrons and include the 

electron photon(eq. (21)) and electron phonon(eq. (17))interaction. 

As the idea of the transformation will be very similar to the one 

of our previous derivations, we will therefore indicate here 

only the main steps. 

The Hamiltonian can be written in the form 

H = H ° + II HI + 12 H2 (74) 

where H I and H 2 describes the electron photon and the electron- 

phonon interaction respectively. We assume that the coupling 

constant 12 which characterizes the strength of the electron phonon 

interaction is small compared to 1 I. We eliminate therefore H 1 

through a unitary transformation to first order in l I. This is 

achieved by identifying 

= ell S H e-ll S (75) 
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where the operator S satisfies the relation 

H 1 = [Ho,S] (76) 

If we collect only the terms which give rise to Raman Scattering 

and disregard all the contributions which e.g. only renormalize 

the photon dispersion relation, we obtain 

1 

= H° +--2 l~ 12 [S, [S,H2]] (77) 

This is the only nontrivial interaction term which survives averaging 

over the equilibrium electron states. 

Schematically this interaction process can be visualized in the 

following picture: 

E(&) 

D~ 

We evaluate the commutators in eq. (77) and average the result over 

the occupied valence band states. We find: 

h 

= -- ~ A b + b CQ + q_Q CQ Hint 2 q,Q q,Q q q_Q A~,Q b + bq + (78) 

where we used the abbreviation 
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gq g~_Q GQ 
A0q : C<+q < 0 < 0)  791 

The formal analogy to the optical parametric process is evident 

in eq. (78) where only one of the lower frequency photons has been 

replaced by a phonon. 

An effective interaction between the electromagnetic fields alone 

can be derived also in this case when the dissipation of the phonon 

field is considered explicitly. 

+ 
The Heisenberg equation for the phonon field CQ 

the form: 

can be written in 

i 
• + + b + CQ = i eQ CQ + - Z b (80) 

2 q AQq q q_Q 

This process is assumed to be quasi resonant 

~q - ~q_Q ~ ~Q 

An effective dynamics of the fields can therefore only be derived 

when the damping of the phonons is taken into account through an 
+ 

additional term -FCQ in eq. (80). In adiabatic approximation, we find 

for the phonon fields: 

1 .+ 
CQ = --2 qZ AQq (~q - 6q_Q - ~Q - iF) -I b +q b q-Q 

Under this approximation we can eliminate the phononsexplicitly from 

the equations of motion for the Stokes and the laser field, and are 

again left with equations of the form eq. (71) with an effective inter 

action 
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I gq gq_Ql 2 (Ek+ q Ek+q h~q)-2 , c _ v _ (Ek+q_ Q - E k - h~q_Q) 

-i 
* (~q _ ~q_Q - ~Q - iF) 

-2 

These equations again can not be rewritten in termsat an effective 

Hamiltonian. From a macroscopic point of view, the cubic response can 
(3) 

be associated with a nonlinear susceptibility X 

(3) Ej E k E 1 Pi ~ Xijkl (81) 

e) Parametric Interaction of Stokes and Antistokes Radiation 

A quartic interaction of the form obtained for the Raman effect, 

can in principle couple more than just two fields. That only the 

external laser field has been coupled to the stokes shifted 

radiation eq. (72) and eq. (80), was an assumption made explicitly 

to simplify the equations of motion. This assumption was also moti- 

vated by the requirement of energy conservation for the overall 

scattering process. If we go back to the Hamiltonian eq. (65), it 

is easily verified that we can include another overall resonant 

process when we allow for a third field (bq3 b + , q3 ) in the following 

way: 

Hin t = hg I [2><1 I (bql + bq3) + hc 

hg 3 [2><3[ (bq2 + bql) + hc (82) 

The three fields are still assumed to be far off resonance with the 

dipoletransitions in order not to cause any measurable population 
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transfer and absorption in the three level structure. If we go 

through the same unitary transformation procedure as in eq. (66), 

the effective Hamiltonian eq. (69) will contain two additional 

terms which read 

~ b + b [3><II + h ~ b + b 11><31 (83) 
ql q3 q3 ql 

with the coupling constant ~ defined analogous to eq. (69) : 

= gl g3 h -" + --- 
E2-E l-h~q3 E2-E3-h ~ql 

For the overall scattering process including the field b to be re- 
q 

sonant, ~ has to be upshifted from the laser frequency 5y a vibra- 
q3 

tional frequency quantum. The interaction eq. (83) then is responsible 

for the creation of antistokes radiation. By the same line of argu- 

ments as used previously, we can derive an explicit field-field inter- 

action Hamiltonian in a straightforward way and obtain 

= b + b + b b + h A~A b + b b b 
H H ° + h ASA ql ql q2 q3 q3 q2 ql ql 

+ h A S b + b b + b + hc 
ql q2 q2 ql 

+ h A A b + b b + b + hc (84) 
q3 ql ql q3 

and the effective coupling constant Asa is proportional to the 

product of the stokes and antistokes coupling constant g and 

eq. (69) and eq. (83) 

ASA % g 
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This process can be interpreted as a two-step process, where in 

the first scattering event a phonon is created by stokes shifting 

the incoming laser field (b ). The laser which is the highest 
q 

1 

intensity field in this problem, is scattered again and upshifted 

in frequency, while the phonon is anihilated. 

i 

Obviously this game can be played on and on, by allowing for more 

and more frequencies to interact. In this way higher order stokes 

and antistokes-shifted fields are produced. In intense laser fields 

scattered radiation can be observed up to about the iO th order (17) 

It may be interesting to note that besides the similar appearance 

of the interaction terms A S , A A which describe the interaction of 

the laser field with the Stokes or the Anti-Stokes radiation, in- 

dividually there exists an essential difference. While the inter- 

action ~A S includes the spontaneous emission of Stokes photons, 

%A A describes only stimulated processes because of the inverted 

order of the photon operators b + , b . The physical reason for this 
q3 q3 

difference is obvious. 

With this example we want to close this chapter where we have 

given an idea of how in principle the different nonlinearities 

which are responsible for the most prominent effects in non- 

linear optics arise in a microscopic picture. We have used rather 

simple models in order to clearify the basic ideas - we did not 

intend to derive quantitative expressions e.g. for the nonlinear 

susceptibilities. 
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D, FLUCTUATIONS 

The probiem of the interaction of light and matter in quantum 

mechanical formulation is in general a problem of many degrees 

of freedom, due to the macroscop£c number of atoms involved on 

the one hand, and the denumberably infinite number of field modes 

in the optical cavity on the other hand. The simplicity and the success of the pre- 

vious approach was brought about by restricting ourselves somewhat 

artificially and without detailed justification to a small number 

of variables which we are tempted to call the relevant ones. In a 

classical picture where no spontaneous processes are possible, this 

somewhat naive line of reasoning does not lead into any inconsis- 

tencies. In the quantum formulation, however, it is not possible in 

principle to choose e.g. just a single mode of the light field as 

the relevant variable, because it cannot be guaranteed that spon- 

taneous emission will not also occur into other modes as well which we do 

not want to consider as relevant variables explicitly. 

The simplification of the general many-body - many-mode problem 

therefore has to be performed in a quantum mechanically consistent 

way and not just by dropping the unwanted variables in order not to 

violate e.g. quantum mechanical commutation relations. The elimi- 

nation of the bulk of the degrees of freedom in favor of a small 

number of relevant or macroscopic variables brings about dissipative 

as well as fluctuating correction terms. This can be achieved in 

many ways, and various methods have been developed to perform this 

elimination procedure (6)' (18)' (19) 

a) Lanqevin Formalism 

An elegant, but rather formal way to eliminate the irrelevant 

degrees of freedom from the description of a many-body problem, is 

the projection operator method developed by H, Mori (20)- Here the 

equations of motion assume the formal appearance of the Langevin 

equation which has been used to describe the stochastic motion of 

Brownian Particles. 
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The generalized Langevin equation of Mori has been derived 

primarly to describe critical spin phenomena but can be used as 

well to formulate many different problems in solid state physics, 

when suitable projection operators are used (21) 

The fundamental idea consists in the construction of a linear 

unitary operator space {~.} in which the dynamical evolution of a 
1 

complex system is described in terms of its Heisenberg equations 

of motion. At the time t=O, a separation is made of the fundamental 

set of operators into macroscopically relevant {x i} and irrelevant 

{yi } variables, using e.g. a time scale argument. An arbitrary 

operator can be split into relevant and irrelevant parts 

fl = Z <x.e> x. + ~ <yjfl> Yj (85) 
i i l j 

where the angular brackets indicate the scalar product of this 

space. By the time evolution of 

i 
= -  [H,n] 

h 
(86) 

relevant and irrelevant parts become mixed and a separation at a 

finite time will reveal that the projections in the relevant and 

irrelevant subspaces will have changed. 

Formally we can separate these parts in the time evolution of 

by introducing the projection operators ~ and ~ = i-~ which allows 

us to write eq. (85) in the following form: 

fl = [ fi + ~ fl (87) 
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By formal integration of eq. (86) we obtain the wellknown gene- 

ralized Langevin equation (20) 

t 

xi = iLi]' x3' - o f Fij (t-t') xj (t') dt' + F i (t) (88) 

with 

Lij : <L x i (0), xj (0) > (89) 

Fij = <L exp i ~ L(t-t') H L xi(O), xj (0)> (90) 

Fj (t) = i exp i ~ Lt ~ L xj (0) (91) 

For the special definition of a scalar product with respect to 

which L is a symmetric operator, we can give the integral kernel 

F.. an intuitive interpretation (20)' (21)- as the "correlation function" 
l] 

of the fluctuating forces Fi: 

£ij (t-t') = <F i (t) Fj (t') > (92) 

So far the result is exact but the kernel F.. can be calculated 
13 

exactly only for linear processes. If we evaluate e.g. in Born- 

Markoff approximation the integral kernel F, this term will lead to 

dissipation, while the "rest" Fi(t), which has only components in 

the irrelevant subspace for all times t, is identified with the 

fluctuating force, giving eq. (88) the formal appearance of the 

classical Langevin equations. 

The physical motivation behind this separation into relevant and 

irrelevant subspaces is based on the assumption that the time scale 

of the irrelevant variables is essentially shorter than for the rele- 

vant ones. Under this assumption, the fluctuating forces have no memory 
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and are assumed to be 6-correlated. 

<F i(t) Fj (t') > = ~ij 6 (t-t') (93) 

The matrix Lii describes the coherent part of the interaction, i.e. 

the reversible time evolution described by the system Hamiltonian 

alone. 

So far, we have essentially disregarded in our calculation the 

irrelevant degrees of freedom and have only dealt with this co- 

herent term Lij. 

For a realistic formulation of the many particle problems des- 

cribed so far, however, we have to add the dissipative terms F 

to our previous description, and in order to guarantee the quantum 

mechanical consistency of the equations we have to add the fluc- 

tuating forces F. These forces, which are quantum mechanical in 

nature, prevent that a dissipative quantum system relaxes to a 

totally classical state. If the ensemble of the eliminated variables 

is assumed to be in thermal equilibrium with the zero temperature 

heat bath, the fluctuating forces describe pure quantum fluctuations 

In general, however, they may contain the thermally imposed fluc- 

tuations as well. Macroscopic systems often are also subject to 

strong nonthermal noise sources which often can be the dominant 

contribution to the fluctuations. 

In quantum optics there exists an important and elementary problem - 

the Resonance Fluorescence - which demonstrates the fundamental im- 

portance of fluctuations for the understanding of the light-matter 

interaction in a very elucidatory way. We will derive the general 

features of this phenomenon here, because it gives an intuitive and 

physical picture of the role of fluctuations. 

The basic question of resonance fluorescence is: What are the 

spectral properties of the fluorescence light emitted by an ensemble 

of independent atoms which are continuously driven by a coherent ex- 

ternal light source? 
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Under the approximation of a classical driving field, where the 

phenomenon is entirely linear, this problem has been solved first 

by Mollow (22), correcting the generally believed wrong picture of 

this effect (23) In this first derivation the classical Bloch 

equations have been used in connection with the Quantum Regression 

Theorem (24). Here we want to describe the problem in terms of the 

quantum mechanical Bloeh equations which are of the form eq. (35-37), 

supplemented by fluctuating forces. This approach is physically 

equivalent with the previous one, but allows an intuitive Understanding 

of the role of the fluctuating forces. 

1 + 
P+ = (i~ - -- )P+ - 2ig W E ~ + F (94) 

T 2 

1 
= - -- (W-W o) - ig (P+ E- - E ~ P-)+ F ° 

T 1 

(95) 

where E * = E exp i~ t is the amplitude of the coherent external 
O o 

field, and pT = P2,1' W = P2,2-PI,I, W ° is the equilibrium popula- 

tion difference in the absence of the external field E. The spatial 

phase factors have been dropped because we are interested in the 

incoherent fluorescence field which is a single atom effect. The 

± (6) (25) describe the fluctuations associated with operators F , F 
o 

spontaneous emission. The induced atomic polarization P±(t) is the 

source of the fluorescence light which is emitted from the sample 

in all directions. The spectral profile of the emitted field is 

proportional to the steady state polarization correlation function 

1 7 i~T + 
S (~) lim , e - <P (t+~) P-(t)> dT (96) 

2H t÷~ -~ 

+ 
where P-(t) is determined by the Langevin equations eq. (94), (95) (6) 

As this system of evolution equations is linear, it can be handled 

in an elementary and straightforward way. 
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Before we formulate the exact solution of the problem, we would 

like to discuss for a moment the result which is obtained when 

the fluctuating forces in eq. (94) and eq. (95) are neglected in 

order to demonstrate the effect of the fluctuations. 

Without the inhomogeneities, these equations are identical with the 

semiclassical eq. (35-37) and have formally the same solutions. 

The wellknown time evolution of the Bloch equation consists of an 

oscillatory relaxation from the given "initial condition" - which 

here are the operators in the Schr~dinger picture - towards the 

unique steady state solution which oscillates at the frequency of 

the external field. Formally we can express this result in the 

following form: 

+ p+ i~ t 
P (t) = T(P±(O), W(O), {zi}, t) + ~ e o (97) 

where T describes the transient relaxation 

lim T(t) = 0 

and P+ is the steady state amplitude eq. (44), independent of the 

initial condition and therefore a pure c-number contribution. The 

spectral distribution obtained in this approximation solely re- 

flects the 6-function distribution of the incoming classical laser 

field 

S(m) = P+, P~ 6 (m-too) (98) 

and does not contain any specific information on the properties of 

the scattering atomic ensemble. 
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Already from a fundamental point of view it is obvious that this 

result has to be wrong, because by neglecting the fluctuating 

forces we allow the system to relax from a quantum mechanical 

initial state to a purely classical state, where the operators 

assume c-number values and therefore com/nute in the asymptotic 

limit t+~. 

lim [P+(t), P-(t) ] = O 99) 

The fluctuating forces, however, prevent the system from settling 

down to the classical stationary state and conserve the quantum- 

mechanical properties. 
+ 

If we interprete the noise operators F-, F for a moment naively 
o 

just as continuous random perturbations that act on the system, 

then we expect that the system is forced to undergo continuous 

transient relaxations (similar to those in'optical coherent 

transients'described in appendix A) and will emit a spectrum 

which is characterized by the eigenvalues z eq. (42) i=i,2,3. 
1 

The three eigenvalues - one real and two in general conjugate 

complex - then are expected to give rise to a three peaked spectrum 

with one unshifted peak at the frequency position of the external 

field and two side bands. All three peaks will have to be of finite 

width, reflecting the relaxation constants (T- z,- T2 I) of the atomic 

ensemble. 

We will show now that these somewhat naive arguments already 

give us the correct picture of the phenomenon of resonance fluores- 

cence. 

The eq. (94) and eq. (95) are solved easily in terms of the Laplace 

transform, e.g. 
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i 1 i 
+ f-1 g2 Eo2 ) r+(~) p (z) = (z) ((z + - )(z + iA + - ) + - 

T 1 T 2 2 

1 
- i2g E f-l(z) (z + iA + -- ) FO(z) 

o 
T 2 

1 
+ 2g 2 E2 f-i (z) F-(z) + -- P+ + ... (iO0) 

o oo 
z 

where the dots stand for all the terms which are not of interest 

here because they approach zero in the limit t÷~. P+(z) is the 

Laplace transform of P+(t) exp -i~ot, f(z) is defined in eq. (42) - 

the zero's of f are the eigenvalues of the Bloch problem. 

As the steady state correlation function eq. (96) is constructed 

in the limit t÷~, we have to collect only the contributions which 

survive this limiting procedure, and obtain the following result 

in a straightforward way: 

3 D I 
s(~) = IP I z ~(~-~o ) + z 

i=i (~-Wo)2+z ~ 
(lOi) 

with 

1 
(2gEo) 4 (T1) 2+ (gEo) 2-Zi 

D1 - (Zl_Zl+l)2 2 -i (Zl_Zl_l)2 2 -i (102) 
8HTI A2+ (}2) 2+ (gEo) 2 

The only additional informations used are the correlation functions 

of the fluctuating forces which can be taken from the literature (6), 

(25) 

In addition to the coherent 6 peak we find a sum of three Lorenzian 

lines which are caused by the fluctuation. In order to show that 

this correction to the simple minded calculation does not describe at 
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all a negligible feature, we will simplify eq. (i01) for the case 

of a strong driving field: 

gE ° >> T~ 1, T~ I, A (lO3) 

and obtain 

S(~) = (2gEo) 
1 

• 2 (A2 + ( _ ) 2  ~(~_~o) 
T 2 

+ - -  
4H (~_~O) 2 + (i 

T2 ) 2 

-i 
3 T 2 3 

+ + -- 

16~ (~_~o_2gEo) 2+ (2~2) 2 16n 

(104) 

(~_~00+2gEo) 2+ ( % )  2 

At first, this may be a somewhat surprising result because it is 

just the coherent part of the spectrum which disappears in the 

limit eq. (103) of a strong external field. However, when we go 

back to the semiclassical Bloch equations we find that this tendency 

is obviously due to the familiar saturation behaviour of the two- 

level system. 

We feel that this is an excellent example to demonstrate in a very 

transparent way the importance of fluctuation because 

i. the problem is linear and can therefore be solved exactly by 

analytical methods; 

2. the inclusion of fluctuations leads to a qualitatively different 

prediction from the semiclassical result; 

3. there exists a conceptionaily important limiting case, at least 

theoretically, where the fluctuation-induced part dominates the 

result; 

4. the theoretical predictions have been verified experimentally (26) 
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b) Fokker-Planck Equation 

The Langevin picture is only one formalism used in quantum statis- 

tics to describe the dynamics of small systems in contact with re- < 

servoirs. Other methods to eliminate the irrelevant variables are 

based e.g. on the density operator p and derive for its relevant 

part an effective irreversible equation of motion t6)' t18)' t19) " " " " " " 

Depending on the special representations used for the density 

operator, the formal appearance of these equations may be quite 

different. The use of a generalized Wigner distribution e.g. 

allows to formulate the time evolution of the relevant variables 

in terms of a generalized Fokker-Planck equation (6) 

In the following chapters we will restrict our discussion pri- 

marily on the classical nonlinear dynamics of the fields, subject 

to classical fluctuations. We will therefore interprete the Heisen- 

berg equation of motion in the previous chapters in terms of 

classical field equations, and will add classical noise terms and 

dissipation. In this way we obtain coupled nonlinear Langevin 

equations of the following structure: 

~i = Ki ({xj}) + Gij ({Xl}) Fj (t) (105) 

where x stands for an individual field amplitude and F (t) for the 
i J 

fluctuating force. Under the assumption that eq. (105) describes a 

continuous Markoff process with delta-correlated Gaussian forces 

F 
J 

<F.j (t) F I (t') > = ~jl 6 (t-t') 

this process can be formulated in the stochastically equivalent 

picture of the classical Fokker-Planck equation (27) 
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3 I 3G.. 

--3t P({xj},t) =- iZ ~xi (Ki +--2 GI° j 3x II]) P({xj}) 

1 
+ -- Z 

2 ij~ 

~2 

3xi3x 
J 

- - G i l  Gjl P({xj),t) (i06) 

for the probability density P({xj}). The formal appearance of this 

equation is that of a continuity equation for a conserved quantity 

the total probability. 

The Langevin equation eq. (105) is in general a nonlinear ordinary 

differential equation for the field variables x i, while the concept 

of the Fokker-Planck equation is a linear one. 

No general methods are known to treat nonlinear equations of the 

Langevin type, while linear partial differential equations of the 

form eq. (106) are among the standard problems in mathematical 

physics. 

For the description of nonlinear phenomena, in the following 

chapters we will therefore only start from the Langevin picture 

with its intuitive physical interpretation, but will then resort 

to the Fokker-Planck description when stochastic properties of 

nonlinear models are to be derived. 

If the coefficients of the Langevin equation (105) do not depend 

explicitely on time, the corresponding Fokker-Planck equation can 

be written in the form of a nonhermitian eigenvalue problem: 

L P = - I P (107) 
n n n 

with 

p({xi},t) = P({xi}) e -It 
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subject in general to natural boundary conditions. 

The eigenvaluesl which can form a partly discrete, partly conti- 

nuous spectrum, characterize the transient relaxation to the 

steady state Po' Io=0" 

For one-dimensional problems and problems which satisfy the con- 

dition of detailed balance (28), the steady state distribution can 

be calculated in a straightforward way: 

e.g. for a one-dimensional process we obtain 

x K(X') 

Po(X) = N G -I exp 2 f G2(x ') dx' (108) 

where the constant N is introduced for normalization. 

The condition of detailed balance is always guaranteed for systems 

in equilibrium (29), but there are fortunate cases where this con- 

dition is also satisfied "accidently" for nonequilibrium systems. 

This allows to solve for the steady state of some multidimensional 

nonequilibrium problems as well. 

One example is the absorptive optical bistability in adiabatic 

approximation (30), an example which we will discuss in the next 

chapter. If detailed balance is not satisfied, one has to resort 

to approximation schemes even for the solution of the stationary 

case. We will give an example of an approximation strategy, using 

as an explicit example the model of dispersive optical bistability. 

Some basic properties of processes without detailed balance and the 

mathematical consequences are presented in appendix B, together 

with an outline of a perturbation approach for the weak fluctuation 

limit. 

The general time dependent solution can be expanded in terms of the 

eigenfunction Pn which satisfy the normalization condition 

fPn(X) Pm(X) Pol(x) dx : 6n,m (109) 

in one dimensional problems. 
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If the functions P 
n 

general 

form a complete basis set, we can write in 

P(x,t) = Z f dx' Pol(x ') Pn(X') P(x',t=O) Pn(X) e -Int 
n 

where P(x,t=O) is the given initial distribution. In order to 

calculate steady State correlation functions we also need multi- 

time probability distributions subject to the special initial 

condition P(x,t=O) = Po" We find e.g. for the stationary two-time 

probability distribution 

P(~,~j xzt I) = E Pn(~) Pn(Xl) e-ln(~-tl ) (Ii0) 
n 

which allows us e.g. to calculate the correlation function 

2 e-%n T G(~) = lim <x(t+~) x(t)> = g gn 
t÷~ n 

111) 

with gn = f x Pn(X)dx and the power spectrum as the Fourier trans- 

form of G(Y). 

The eigenvalues I characterize the time scales of the nonlinear 
n 

diffusion process. If the spectrum is discrete and has well se- 

parated eigenvalues Al=ln-ln_ I, we expect that for time t>>hl -I 

the lowest nontrivial eigenvalue already gives a satisfactory esti- 

mate of the relaxation time of the stochastic process. 

Unfortunately, in many physical important cases the time dependent 

Fokker-Planck equation resists an exact analytical solution, and 

approximate solutions have to be found. Problems subject to weak 

fluctuations away from any critical regions which contain only a 

single stationary point can well be approximated by a linearized 

model. However, for situations close to critical points or for 

multistable systems, i.e. systems which contain metastable points, 
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the local analysis of a linearized approximation does not give a 

satisfactory answer to the physical questions, and better approxi- 

mation methods have to be applied. 

For stochastic processes which satisfy the potential condition (27) 

the eigenvalue problem eq. (107) can be rewritten in terms of a 

selfadjoint problem for which various approximation schemes have 

been developed. One of the methods wellknown from the elementary 

course of quantum mechanics is the variational method of Ritz. This 

method is quite generally applicable,asitdoes not rely on additional 

assumptions on the parameters of the model, as e.g. the WKB Method. 

Another advantage is that the variational ansatz gives a rigorous 

upper bound for the eigenvalue I n. 

For an eigenvalue problem of the Fokker-Planck form we can derive 

a variational expression which assumes the compact and convenient 

form ( 31 ) 

aS n aSn 
IPo({Xj}) ~ Gij GIj 3x I dV 

< (112) I n -- 

Po({Xj }) S2n dV 

where S is a suitably chosen variational test function which 
n 

satisfies additional orthogonality relations as e.g. 

f Sl({Xi}) Po ({xi}) dV : O (113) 

The summation convention is implied. 

For a one-dimensional problem with a constant diffusion coefficient 
1 

G 2= ~ Q we can rewrite the eq. (112) for the first variational eigen 

value in the rather compact form 

Q '2> 
i I ~ -- <S I / <S~> (114) 

2 



159 

where the angular brackets denote the average over the stationary 

distribution P . 
o 

For a one-dimensional problem with the steady state P (x) the re- 
o 

lation eq. (113) can  be s a t i s f i e d  e . g .  by u s i n g  Sl (X)=X-<X>.  

With this simple ansatz for S we obtain the following result: 
n 

Q 
k < -- K -I (115) 
1 -- 2 

2 

where K 2 ~s the second cumulant of the process defined by 

K 2 = <x 2> " < x >2 

This result seems to be quite reasonable from an intuitive physical 

point of view. 

If the Langevin equation of motion is controlled by a given external 

field amplitude y through the following linear dependence 

x : K(x) + g(x)y + F(t) (116) 

we can derive with the help of eq. (108) and (115) some practically 

helpful relations. 

The deterministic approximation of the process eq. 

stationary solution x=x defined by 
o 

(116) has the 

K(x O) + g(Xo)Y = O, Xo=Xo(Y) (117) 



160 

the local stability of which is characterized by the sign of the 

curvature of the effective potential 

= , , = + y.f u(x) S (K(X) + g(x')y) dx u ° 

dK dg 

dx x=x ° 
118) 

taken at the stationary point (I>O locally stable, l<O locally in- 

stable). 

A linearized solution of the stochastic eq. (116) reveals I as 

the slowest relaxation rate for the local decay. Inserting (117) 

into (118) we find 

~y 

= g(x o) -- 
~x 

o 

(119) 

or with the relation f' (x)=g(x) 

-i -2 df(xo) 
1 = g (x ° ) (120) 

dy 

If for the variational principle eq. (114) we choose the testfunction 

S : f(x) - <f> 

we obtain 

<f2> _ <f>2 i d<f> 
Xi I _> = 

<g2> <g2> dy 
(i21) 
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where we used the evident relation 

d 

dy 

<f> = <f2,> _ <f>2 (122 

The formal resemblance of the two results is obvious: 

1 df 
h-l=_ deterministic time constant Tdet = 

g2 dy 
(123 

variational lower bound for 

the relaxation time 
1 d<f> 

~var = 111 ~ - -  
<g2> dy 

(124 

In the limit of weak fluctuations Q ÷ O, we are tempted to expect 

that the two results coincides: 

lim Po(X) ÷ 6 (X-Xo), ~det = ~var 
Q+O 

But this is the case only for problems away from critical points or 

with only a single stationary point x o. For multistable problems 

the definition eq (119) is not unique, and Po(X) does not necessarly 

collapse into a single ~-function peak. In these cases we expect 

even in the weak fluctuation limit considerable differences between 

the deterministic and the stochastic approach. An example of this 

behaviour is the optical bistability which we will discuss in chapter 

E. 

With the help of these formal results we will describe in the 

following chapter various aspects of nonlinear phenomena under the 

special aspect of fluctuations. 



162 

E, FLUCTUATIONS IN NONLINEAR OPTICS 

We will now combine the concepts of the two preceeding paragraphs 

in order to discuss nonlinear optical phenomena under the influence 

of internal and external noise. For macroscopic systems one might 

expect that fluctuations are extremely weak and not essential for 

the description of physical processes. If the system under con- 

sideration is in a globally stable state, the statistical nature 

of the macroscopic dynamics is indeed of minor importance and can 

safely be neglected. When, however, by changing e.g. some external 

parameters the state of the system approaches its limits of stability, 

large excursions about the deterministically described values may 

occur, and fluctuations are enhanced up to a degree where they play 

an essential role for the understanding of the macroscopic evolution• 

Equilibrium phase transitions are one class of examples - another 

class of phenomena consists of the various phase transition analogs 

that have been found in nonequilibrium systems. Nonlinear quantum 

optical processes are some of the most widely discussed examples of 

nonequilibrium systems that undergo phase transition (33)' (34) . The 

most wellknown example among the optical processes is the single- 

mode laser (6) Here we will however, restrict ourselves to the 

special processes in nonlinear optics. Most instabilities that have 

been found in this field are bearing a strong resemblance to the 

critical behaviour of a second order phase transition (33)' (34) . Quite 

recently, however, instabilities have been found which contain regions 

of metastability and exhibit hysteresis cycles somewhat analogous to 

first order phase transitions (35-38) 

Multistable optical devices may prove to be practically important in 

the field of information processing, due to their fast time response. 

On the other hand, multistable or metastable systems are of special 

interest in connection with fluctuations. 

In this chapter, we will now discuss the most important nonlinear 

processes separately under the influence of classical and quantum 

noise. 
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i) Parametric Oscillators 

We consider a nonlinear crystalline medium with a strong second order 

susceptibility responsible for three-wave mixing, contained in an 

optical cavity and pumped from the outside by a coherent external 

field. The finite lifetime of the photons in the cavity is governed 

by the index of reflection R(~). 

The quantum mechanical Langevin equations for these processes can 

be written in the form 

"+ (i~l_~l) + + + b I = b I + ig b 3 b 2 + F 1 (125a) 

+ b I + + b 2"+ = (i~2-a2)b ~ + ig b 3 F 2 (125b) 

• + + + + + p+ elm3 t 
b3 = (i~3-a3)b3 + ig~bl b2 + F3 + n3 (125c) 

where we supplemented the eq. (57) and eq. (62) by the photon damping 
c 

constant ~i: L (l-R(~i)) and the corresponding fluctuating forces: 

<Fi(t) F~(t')> = 2~ i 6ij (l+nth(~i)) 6(t-t') 

The field b 3 is coupled to an external coherent laser source. This 

coupling is simulated by the force term P in order to circumvent the 

delicate boundary value problem. A finite pump amplitude P will 

prevent the field b 3 from decaying to zero. To simplify the calcu- 

lation, we will assume energy conservation: 

h~  3 = h ~  1 + h~ 2 
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We will find that this system eq. (125) possesses a critical 

threshold region. Below threshold only the laser field b 3 has the 

properties of a quasi-coherent field while the subharmonic fields 

b I and b 2 can be characterized by low intensity noise. In this 

region, we will describe the field b 3 as a classical variable but 

use a quantum formulation for b I and b 2 in order to account for the 

quantum noise. The quantum nature of the relevant fluctuations will 

show some unexpected peculiarities. 

Above the threshold all three fields are partially coherent, and 

the process is essentially classical. 

a) Quantum Fluctuations Below Threshold 

We eliminate the rapid oscillations by the transformation 

b~j = ~+3 exp i~jt, F~3 = ~3 exp i~3t 

(no confusion will arise,when we drop the tilde again for simplicity) 

Below threshold the so called signal b I and idler b 2 fields remain 

weak, and the field b 3 is entirely controlled from the outside 

source. This condition has to be confirmed selfconsistently at the 

end of the calculation. We replace 

+ + 
b 3 ~ p 

and obtain the following closed linear system of equations for the 

Heisenberg operators b~(t), b2(t) with fluctuations. 

• + + p+ + 

bl = -~i bl + i g b 2 + F 1 

- + 

b2 = -~2 b2 - i g P b I + F 2 (126) 
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As these equations are ordinary linear differential equations, 

they can be solved by the standard analytical methods for c-numbers, 

bearing in mind only that the initial values are given by the 
+ 

operators b I, b 2 in the Schr~dinger picture. 

(39) 
The eigenvalues of this homogeneous system are given by 

i i Ip121/2 
11'2 : - --2 (~l+X2) ± --2 (~i-~2)2 + 4~i~2 ~-) 

C 

(127) 

where we introducedthe threshold power p2 -2 e = g ~i~2 . If IPI 

approaches Pc from below, one of the eigenvalues approaches zero, 

marking the limit of stability of the low intensity solution, i.e. 

the linearization approximation. 

The stationary correlation function characterizing the power spec- 

trum 

+ (t+T) bl (t) > (128) G(T) = lim <b 1 
t+~ 

is a linear functional of the correlation function of the random 
+ 

forces F 1 a n d  F 2 a n d  t h e i r  h e r m i t i a n  c o n j u g a t e s  

+ (t" G(~) = F {<F (t' F i )>} 
1 

(129) 

At optical frequencles the thermal noise can safely be neglected, 

and all normal order correlation functions of the fluctuating forces 
+ 

vanish. Obviously the quantum noise of the idler field b 2, b 2 is 
+ 

therefore responsible for the fluctuations of the signal field b I, b 1 

while the fluctuations of this field itself have no effect on nor- 

mally ordered correlations. 
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The solution of the eq. (126) is most easily obtained by Laplace 

transform and yields 

1 - - - -  e 2 T G(r) 

~-~ i ~2 
(130) 

which leads to a spectral distribution of the following form 

2 
G(~)- __ ~1.~q2(~+~) -1 (~2+~ 

/211 

- i  
(131) 

is the external pump power normalized on the threshold where q= Pc 

value. 

Close to the transition point q=l the spectrum consists only of a 

single narrow Lorenzian line with the width A=IIII, which vanishes 

at the threshold. 

The intensity of the random signal field is given by 

2~ 2 
<b I+ bl> - (q-2-1)-l, q<l (132) 

~l+X2 

and diverges at the critical pump power q=l. For the degenerate case 

~i=~2=~ we obtain the simplified results 

linewidth A - l+<blbl> + + (133) 
l+<blbl > 

+ = q2 (l_q2) -I photon number <blbl> (134) 

Well below threshold the signal - and idler fields are qualitatively 

similar to thermal radiation, but mutually triggered by quantum 

fluctuation. For a strongly pumped system, the above solutions do no 
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longer hold but give a qualitative understanding of how quantum 

fluctuation initiate the transient evolution of an instable system. 

The exponential growth will not go on forever, and saturation in 
+ 

terms of the depletion of the pumpfield b 3, b 3 will become im- 

portant and will have to be taken into account. This behaviour is 

reminiscent of the laser in the threshold region, and indeed a 

strong analogy between these two effects exists. The laser theory 

can therefore be reformulated in terms of the parametric oscillator 

and can give a complete quantum mechanical description as long as 

the cavity model with the mode picture is used (39) . When, however, 

spatial degrees of freedom play a role, and one is concerned with 

the phenomena of light propagation, this analogy breaks down [16),'" 

due to the different boundary conditions of the two problems. 

b) Nonlinear Classical Model 

We will not repeat the laser theory here but focus our interest on 

a special aspect - the role of external fluctuations brought about 

by the fluctuations of the external driving field. This will be done 

by using an entirely classical picture for the field amplitude 

bi=A i exp imit, and the fluctuations. In order to simplify the non- 

linear problem, we will assume that the laser field A 3 is strongly 

damped ~3>>~2 and follows adiabatically the slow variables A I, A 2. 

By neglecting the time derivative in eq. (125c) we obtain the alge- 

braic relation 

1 

o 
~3 

(135) 

This assumption reduces the general problem to the four-dimensional 

problem for the signal - and idler fields alone: 

• g2 

I A2I  A +igA 
~3 ~3 

g2 

i A +igA 1 
~3 ×3 

(136) 

(137) 
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We neglect for a moment the fluctuations in the driving field F3=O 

and assume equal damping of the fields AI,A2,~ 1 = ~2" 

<F i(t) F i(t') > = Q6 (t-t') 

In this case the stationary Fokker-Planck equation corresponding 

to the Langevin equation (136), (137) is solved in a straightfor- 

ward way, and we obtain 

1 
P({Ai,A~}) = exp - -- u({Ai,A~}) 

Q 
( 1 3 8 )  

with the potential (40) 

2 g~ 
u = . z IAi 12 + ig (pghA2-c c.) +- IA 1 

i=l ~3 
2 I A 2 1 2  ( 1 3 9 )  

which governs at the same time the deterministic equations of motion 

in the following way 

~u 

A *  = - -- ( 1 4 0 )  1 
1 

For the pump intensity IPI 2 below threshold eq. (138) has a single 

peak at the origin describing the noisy signa~ below threshold. 

Above threshold the stationary distribution has an extremum in the 

four-dimensional space at 

I A i 2 _ 3 (q-l) (141) 
g2 

and 

arg (P~ + A 1 + A 2) = 9/2 
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which is continuously degenerate with respect to the phase difference 

arg (AI-A2). This is interpreted as phaselocking for the sum of the 

field phases to the external field, while the phase difference 

diffuses freely analogous to a one-dimensional random walk process. 

This phenomenon is well known from the phase diffusion of the 

single mode laser above threshold. 

The description in the four-dimensional phase space of signal and 

idler does not give immediately an intuitive and simple picture of 

the process. We will therefore go one step further and eliminate 

also the idler field adiabatically by assuming that the idler field 

is strongly damped as well ~2>>~i , and arrive at the following two- 

dimensional model: 

LAll (142) 

where 

d = ~i (q2-1) and b = g2 ~i q2 (143) 

~2~3 

The ~. are collections of the various fluctuating forces F . 
1 1 

If we neglect the multiplicative noise source F 2, the model eq. (142) 

is identical with the model of the single mode laser in adiabatic 

approximation, and all the fundamental results from the laser theory 

apply here as well (6)' (28)' (40) . In contrast to this approach we now 

want to assume that the additive noise source is of negligible 

strength compared to the multiplicative one. This can be substantiated 

by the fact that the multiplicative force F 2 contains the fluctuations 

of the driving laser field, the strength of which can in principle be 

controlled externally. 

By these arguments we are motivated to discuss the properties of the 

fgllowing multiplicative stochastic model (41), (42) 

= dA - b IA[2 A + AF (144) 
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and assume for the fluctuating forces: 

<Re F(t Re F(t') > = Q6 (t-t') 

<Ira F(t Im F(t')> = Q6(t-t') (z45) 

It is possible to solve this problem exactly by means of analytical 

methods when we express this process by the stochastically equi- 

valent Fokker-Planck e q u a t i o n  (41 ) '  (42) 

- r(dr_br 3_ _ -- r 2) + 
~t r Dr 2 Dr 2 ~2 

-- - -  P (146) 

where polar coordinates have been used: A = r exp - i~ 

The general result 

_ ~mt 

P(r,~,t) = 7 Cmn Pmn(r) eim~ e (147) 
n,m 

subject to natural boundary conditions, i.e. lim P(r)=O is obtained 

by standard methods, r÷® 

For the discrete branch of eigenfunctions we find 

b r 2 d br 2 
Pro(r) = N r -2+2(d/Q -n) Q (-n,- - 2n+l --) 
n e IF1 , 

Q Q 
(148) 

with the corresponding eigenvalues 

1 d 
I m = -- m2Q + 2nQ ~ - n) 
n 2 Q 

(149) 
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d 
subject to the restriction Q >2n. N is determined by the normali- 

zation condition. In addition we find a continuous branch in the 

spectrum of decay rates i. 

An experimentally observable quantity is the two-time correlation 

function which - with the general expression of chapter D, eq. (ii0) 

(iil) - can be written in the following form: 

1 
li~ <A* (t+T) A(t) > = L (<) 2 
t÷ ~ n 

_lit 
n 

e 150) 

with 

1 pl (r) r 2 dr 
gn : S n 

151) 

We notice a drastic difference between the multiplicative process 

here and the analogous additive one like e.g. the single mode laser. 

While with increasing pump rate the phase diffusion in the case of 

the laser slows down continuously, leading to the well known line 

narrowing effect above threshold, here the corresponding relaxation 

rate remains essentially constant. In other words: The fluctuations 

of the external driving field set a lower bound to the line width 

of the parametric process. With increasing pump power the average 

field amplitude increases, and so does the effective strength of 

the fluctuations which then balancesexactly the line narrowing effect, 

well known for cases of phase diffusion with additive noise. 

2) Subharmonic Generation 

The effect of subharmonic generation is the special case of a degenerate 

parametric oscillator with identical signal and idler frequen- 

cies ~i = ~2" Therefore it would be superfluous to add here a 

chapter about this effect, because not very much new could be 

learned on top of what we already know from the previous paragraph. 
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Here we would like to emphasize however, a new aspect of subharmonic 

generation which comes about when both modes are pumped simul- 

taneously by coherent or partially coherent external laser fields. 

This device can operate in two different states and can be 

switched between these states by external means. The occurence 

of metastable states and hysteresis is new in connection with para- 

metric processes described so far, and bears a strong resemblance to 

first order phase transitions (43)' (44) 

We consider the nonlinear coupling of two waves of frequency ~i 

and ~2 via a nonlinear medium in an optical cavity. The coherent 

pump field P2 at the fundamental frequency ~2 provides the pump 

necessary to establish subharmonic oscillations, while the additional 

pump Pl is used to control the subharmonic bistability. We eliminate 

the fundamental field A 2 by an adiabatic assumption ~2>>~I and obtain 

the following Langevin equation for the subharmonic field: 

g2 g 

il =-"1A1 - - -  IA112 A I +  (-) P2~ + Pl 
2~2 ~2 

g 

+ F 1 + (--) A~ F 2 (152) 

~2 

where the noise forces F I, F 2 are assumed to be statistically in- 

dependent and 6-correlated 

<F i(t) Fj (t') > = 2Q i 6ij 6 (t-t') (153) 

As the process eq. (152) cannot be solved in full generality, we 

will restrict ourselves to two special cases: 
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a) Additive Fluctuations (F2= O) 

In this case, the process eq. (152) satisfies the condition of 

detailed balance, and the steady state distribution can be given 

immediately (44) 

1 
P o ( A I ' A ~ )  = N exp - -- ¢ (A 1 ,A~)  

Q1 

(154) 

where the potential is given by 

g 

2.  2 

g2 

(P~ A1 + P l  A~) + ( ) I A 1 1 4  (155) 
4" 2 

In order to discuss the properties of the potential ¢ we introduce 

polar coordinates: 

A 1 = r e i~, P1 = rl ei~l' P2 = r2 ei~2 

Without limiting the generality of the calculations we can take the 

pump P2 to be real. For the phase of the pump field Pl we discuss 

two special cases, ~i = O and ~i- 2" 

i) 

In case ~=O we find two minima of the potential #, separated by 

a saddle point, if the following relations are satisfied: 

8 c 
r l  = r l  O = ( - -  g ( r 2 - r 2 )  3 ~ 2 3 ) 1 / 2  

' 2 7  
(156)  
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and 

c 
r 2 > r 2 = ~l~2/g 2 

The intensities of the two minima are roughly the same, while 

the phases are ~=O, ~=H. The probability of the inphase component 

~=~i=O increases with increasing pump amplitude r I. If r I is in- 

creased beyond the critical value r~ O' the potential has only a single 

minimum. This result reflects the tendency of the subharmonic 

field to adjust to the phase of the external pump field PI" 

ii) 

When we choose ~i=~ , the potential has two minima located at the 

positions 

i rl ~2 
r 2 = -- (r2-r~), sin 9 . . . .  (r2-r~) -I/2 

g r 2 /8gg 
(157) 

provided that the following condition is met: 

8g 

' ~ 

The dependence of these minima on the pump power P1 is most easily 

followed in the fig. la-lf given on the next page: 

We have plotted P(x,y), x:ReAl; y:ImA 1 for fixed values of r 2 and 

for different values of r I, ~i" 

c 
Fig. la - ic O < r I < r"o ' ~i : O 

c 
Fig. id - if O < r I < r"~/2' ~i = Z/2 
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b) Additive and Multiplicative Fluctuations 

A general solution for the steady state Po has not been found so 

far. When we recognize, however, the phase locking tendency in 

these coherent interactions, we may as well discuss the one-dimen- 

sional approximation disregarding the phase fluctuations. In this 

case both pump fields have to be taken in phase. 

The potential obtained under this assumption 

: + -- - in IA~ + 1 
\g2Q 2 2 2Q~g 2 gQ2 Q2 g2 

2pi 2 g 
+ - arctan (A 1 -- ) 

2Q2 2/QIQ2 ~2 Q1 

(158) 

is a model for the amplitude diffusion under the simultaneous in- 

fluence of additive and multiplicative noise sources. This potential 

describes the inphase bistable behaviour, which is qualitatively 

similar to eq. (155) as long as the multiplicative fluctuations re- 

main weak. For increasing Q2' however, the subharmonic oscillations 

disappear as the multiplicative fluctuations increase the thres- 

holds pump power: 

g2 

P2 > ~i~2/g2 + -- Q2 (159) 
2~ 2 

This is easily understood in physical terms, when we remember that 

the noise Q2 contains' besides other sources of fluctuations, the noise 

of the external pump field P2" For a purely incoherent pumpfield, 

however, subharmonic oscillations cannot be expected, and the re- 

sult eq. (158) interpolates between the coherent and the incoherent 

limiting cases. 



3) Absorptive Optical Bistability 

177 

An ensemble of two-level atoms contained in a partially reflecting 

optical cavity, driven on resonance by an external laser field, 

exhibits a bistable behaviour with respect to the transmitted field 

intensity (37) . The deterministic equations contain regions with 

only a single stationary point for small and large pump field in- 

tensities, and a domain of multistable stationary points in the 

region of intermediate intensities. Utilizing the linear stability 

analysis, the deterministic equations allow to differentiate between 

e.g. stable and instable stationary points. As the linearization 

procedure can only make predictions about the local properties, 

stable points may still turn out to be only metastable when the 

global dynamics is considered. The inclusion of fluctuations will 

reveal the global stability properties in a quantitative way, be- 

cause they provide a mechanism for the relaxation towards a unique 

equilibrium or steady state distribution even when potential barriers 

have to be overcome. 

How important this distinction between metastable and stable really 

is from a practical or experimental point of view, depends on the 

time scale of relaxation. 

We will present here a stochastic theory of optical bistability in 

terms of a simple model (38) which still contains the basic features 

of the effect. 

The steady state solution of the corresponding Fokker-Planck equation 

will allow us to differentiate between stable and metastable states, 

while the timedependent solution will give a quantitative estimate 

on how longlived the metastable states really are. 

We start from the Langevin equation (94) and eq. (95) for the dy- 

namics of the atomic system, and include explicitly the Maxwell 

e q u a t i o n  f o r  a s i n g l e  c a v i t y  mode, d r i v e n  e x t e r n a l l y  by t h e  l a s e r  

field E 
O 

/ 

+ + ei~o t + F + (160) E ~ = (i~-~) E ~ + i g P + ~ E 
O 
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+ 
F- describes the fluctuation corresponding to the dissipative term 

E + as well as the fluctuations of the external source field E +. 
N o 

~ g ~ For the discussion in this paragraph we will make the 

simplifying assumption that the three fields P, E, E are in reso- 
o 

nance, ~=~ = ~. This restriction will be lifted in the next section 
o 

when we include dispersive effects as well. 

The entire five-dimensional problem resists all attempts for an 

exact and general solution, and we will use the adiabatic principle 

again to eliminate the atomic degrees of freedom under the assumption 

T2~<<I, and obtain, by collecting all terms systematically in lowest 
( 3 0 )  . 

order in xT 2 

% 
dE i ~ d , ,~ ~ ~ i ~ ~ ~ ~ ~ 

+ - -  E - -  . . IE I  2 = - E . . IE I  2 + - -  E(EoE*-E-~E)u 
dt 2 dt 2 

ru % 
+ (I+F2)E + E + fluctuations (161) 

o 

where we used the rescaled variables 

~_+ : E ± (4g2TIT2)1/2 

%+ + 
E~ = E- (4g2TIT2)I/2 

o 

% 
t : t~ 

and 

F 2 = - 2gg T 2 -i Wo (162) 

We will drop the tilde again to simplify the notation. The fluctu- 

ations contain the following contributions~30) : " " 

i) Fluctuation of the polarization 

F 2 

- i -- (TIT2)I/2 
w 
o 

± 
r ( 1 6 3 )  
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ii) Fluctuations of the inversion, which are multiplicative in 

nature 

F 2 

-- T 1 E F ° 
W 
o 

+ + + 
iii) Fluctuations of the pump field E- ÷ E- + F- and 

o o o 
<F + F - >  = 2Q~ ( t - t ' )  

o o 

(164) 

i 1 
F- (i+--IE[ 2) +- F + E 2 
O 2 2 O 

(165) 

Models which contain each of these fluctuating terms separately 

have been discussed with respect to their stationary behaviour t30)'" 

The only model, however, which allows a solution including amplitude 

as well as phase fluctuations is the third case iii), and we will 

restrict ourselves to this model here. 

The Fokker-Planck equation corresponding to this process eq. (161) 

with the fluctuations eq. (165) can be written in terms of polar 

coordinates: 

1 ~ F2r Q 

-- P(r,~,t) = --- r (r-r cos(~-~ o) + -- + -- --)P 
St r Dr o l+r 2 2 ~r 

1 ~ Q 1 ~ 

+- -- (r ° sin(~-~o ) +----)p (166) 
r ~ 2 r ~ 

with E = r exp -i~, E o = r ° exp -i~o 

a) Stationary Properties 

In spite of the fact that eq. (166) describes a process which can 

be far from thermal equilibrium, this process nevertheless satisfies 

the condition of detailed balance, and the steady state,distribution 
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is obtained in a straightforward way: 

Po(r'~) = N (l+r 2) 

-F2/Q 1 

exp - -- (r2-2rr O cos(~-~o )) 
Q 

(167) 

where N is included for normalization. 

Fig. 2: Steady state probability Po(r,~) for absorptive optical 
b~stability (eq. 167) 

In fig. 2 the probability distribution is plotted for a special 

choice of parameters in the region of bistability. The peak character- 

izing the low intensity stationary point, i.e. the absorptive solution, 

is narrower than the peak describing the saturated or bleached state 

of the device. 
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Fig. 3: Averaged amplitude <E> for absorptive bistability. Com- 
pared with the deterministic steady states (dashed curve). 

With the exact solution eq, (167) we are in a position to calculate 

all steady state expectation values. The average field amplitude 

e.g. <E> = f rP o rdrd~ is plotted in fig. 3 as a function of the 

average amplitude E of the driving field. The dashed line indicates 
O 

the hysteresis cycle of the deterministic theory, In the limit Q+O 

the averaged field <E> will coincide with the most probable value 

in the monostable regimes. As <E> is a single valued function of E o, 

it will have to decide which branch it is going to follow inside of 

the bistable domain. As expected, we find that a sudden transition 

occurs from one branch to the other. The point where the two branche 

exchange global stability, corresponds e.g. to the coexistence vapor 
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pressure of the van der Waals gas, which can be characterized by 

the Maxwell construction. One can show that the Maxwell construction 

for this nonequilibrium but detailed balance case still holds ~46) .'" 

In contrast to this, the boundaries of the bistable domain are de- 

fined by the limits of local stability. 

t 
<EZ~-,,E, 2 

! :\ ..... 

/ II/ _ 
8 9 1 8  I I 1 :> 1 3  ~ P o  

te l  

8 

6 

4. 

2 

Fig. 4: Second cumulant for absorptive bistability. 

Using the relations of eq. (122), the second cumulant which character 

izesthe fluctuations of the field, is easily obtained merely by 

differentiation - the result is plotted in fig. 4. 

It clearly exhibits enhanced fluctuations at the transition point 

mentioned before. 
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Here we want to emphasize that the point characterized by enhanced 

fluctuations is the point of stability exchange of the two branches 

and not the boundaries of the bistable regime which have recently been 

called erroneously 'critical points' in a number of publications. 

It should also be mentioned that this model includes the single 

mode laser if we set E = O; F 2= - 1 defines the laser threshold. 
o 

The classical laser model is only obtained after expanding the lo- 

garithmic term in the exponent up to second order in the field in- 

tensity. A difference between the two models, however, is only ob- 

served in the asymptotic dependence P(r), r÷~ of the probability 

density. 

b) Dynamic Properties 

In order to discuss the dynamical properties of optical bistability 

we would need a general solution of the time dependent Fokker- 

Planck equation eq. (166). So far, no exact solution has been found 

and we have to resort to approximation methods in order to determine 

what metastability really means quantitatively for the physical pro- 

cess here. When we look for an approximation strategy, we have to 

keep in mind that we are dealing with a rather complicated model: 

i) Linearization can only be used in the monostable regimes well 

away from the boundaries of the bistable domain. 

ii) A "mean first passage time" calculation will deliver reasonable 

results well inside of the bistable domain but deteriorates, when 

the boundaries are reached. 

iii) In order to demonstrate the role of fluctuation we would like 

to compare results for strong as well as for weak fluctuations. 

A promising method which may overcome all these problems is the 

variational principle as described in chapter D eq. (112). 
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This principle does apply here because the problem under consider- 

ation satisfies the potential condition (27) and an exact analyti- 

cal solution for the steady state is already known. The only 

troublesome point in the variational approach may lie in the fact 

that one may not have enough physical or mathematical motivation 

for guessing a proper variational function. The simple appearance 

of the variational expression eq. (112), however, is very helpful 

for choosing a suitable ansatz. 

Before we will proceed in this way, it may be interesting to stop 

for a moment and see if we cannot somehow guess the result quali- 

tatively. 

If the fluctuations are very weak, we expect that already the local 

stability consideration will give satisfactory results. This concept 

has been outlined in chapter D, eq. (123) and eq. (124), where from 

the deterministic equations we define the relaxation rate simply by 

differentiating the relation ~ = ~ (Eo), where ~ is the determinis- 

tic or most probable field amplitude. This means that we have to 

differentiate only the dashed curve in fig. 3 and invert the result. 

The corresponding curve is plotted in fig. 5 as a dashed line marked 

Q = O. This curve is not single valued in the bistable domain and 

therefore cannot be the proper approximation for the global relax- 

ation in the weak noiSe limit, but may still approximate satis- 

factorily the relaxation rates in the monostable regimes. In the 

limit Q + O, when the potential in P contains two minima, there 

exists no physical process which would allow the system to approach 

the steady state. The relaxation rate ~i will therefore have to 

vanish inside the bistable domain in this limit. 

In fig. 5 we compare the two cases Q = O and Q ÷ 0 and see that 

they do not agree when bistability occurs. 

A better approximation is given by the relation eq. (124) where we 

derived a general approximate upper bound from the variational prin- 

ciple which is determined simply by differentiating the averaged field 

amplitude <E> and not as above the most probable value, with respect 

to the pump field amplitude E o. This, however, has already been done 
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in fig. 4. The only thing left for us to do is to invert this picture 

and compare it with our estimates above. This result has been plotted 

in fig. 6 for different strengths of the fluctuations. 

25 

\ 
\ 

\ 

\/o:o 
I 

I I I I ' 

2 & 6 8 10 12 l& 16 

Fig. 5: Comparison of the determinstic time constants (Q = O) with 
the Fokker-Planck limit Q ÷ O. 
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Fig. 6: A simple variational estimate of the eigenvalue 11 (eq. 115) 

We expect that the correct variational eigenvalue Ii (Eo,Q) will 

follow qualitatively the deterministic predictions in the monostable 

region regime, but will go through a deep minimum inside of the bi- 

stable domain. For decreasing fluctuations, we expect that the curve 

Q ÷ O will be approximated better and better, the smaller the fluc- 

tuations are. No singularity or irregularity, however, is expected 

to occur at the boundaries of the metastable domain. 
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The variational calculation has been performed, using the following 
(31) 

ansatz 

l-exp-a (r-r I) 
Sl(r ,~) = (168) 

l+exp-a (r-r 2 ) 

and the results are plotted for different values of the fluctuations 

Q on the linear scale in fig. 7 and on a log scale in fig. 8. 

1 . 4  

1 . 2  

1 . 8  

8 . 8  

8 . 6  

B . 4  

8 , 2  

8 8 18 I I 12 13 14 - ro 

Fig. 7: Variational eigenvalue ~i using the testfunction eq. 168 
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Fig. 8: The same result as fig. 7 but on a log scale. 

From the linear plot it is rather obvious that the Q ÷ O prediction 

of fig. 5 is approached while the logarithmic scale plot exhibits 

the drastic variation inside the bistable domain, but a continuous, 

smooth behaviour at the boundaries of bistability. 
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Fig. 9: Time dependent probability P(x,t) according to eq. 169. 

In order to get an intuitive picture of the transition behaviour of 

the probability distribution P(x,t) which can be described by using 

only the steady state eigenfunction Po and the variational approxi- 

mation P -S for the first "excited" state, we have plotted in fig. 9 
o 

the time evolution of the distribution which has been localized 

initially around the metastable low intensity state. To simplify the 

plot, we have chosen the one-dimensional limit of the previous model 

P (x,t) = Po(X) (I-SI(X) e-ll t) (169) 
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4) Dispersive Optical Bistability 

The assumption of perfect resonance between the cavity mode 

and the atomic transition frequency ~ on the one hand and zero de- 

tuning between the cavity mode and the external laser field ~o on 

the other hand was the essential assumption to establish detailed 

balance, and to provide us with an exactly solvable model. If one 

of the two resonance conditions is violated, the condition of de- 

tailed balance is violated as well, and there is no systematic 

way to derive an exact solution even for the steady state. Intro- 

ducing the detuning parameter6=(~-~)~and A=(~-~)T 2 we can reformu- 
(45) 

late the Fokker-Planck equation (166) for this generalized case: 

DP i D r Q D 
-- = - m r ( (l+r2+F 2) - r cos (~-~o) + -- --) P 
Dt r Dr l+r 2 o 2 Dr 

1 D r Q 1 D 
+ -- -- (6r + AF 2 - -  + r sin (~-~o) + -- ----)P (170) 

r D~ l+r2 o 2 r D~ 

An exact general solution for the steady state of this process is 

not known. 

In this paragraph we will present an exact solution of a special 

case of finite but symmetric detuning A=6 and an approximate so- 

lution for the general case A%~ in the limit of weak fluctuations. 

a) The special case of equal detuninq A=~ 

In spite of the fact that detailed balance is not satisfied for this 

model as long as 6~O, A%O, we can derive an exact steady state 

solution in this special case for equal detuning 6=A in the following 
(45,46) 

form : 
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P (r,~) 
O 

1 rr 
= N exp - -- (r2-2 o___o__ cos (~-~o-~o)+F21n(l+r2)) (171) 

Q /i+~ 2 

where 

tan 40= - A = - 
L0 --0~ 
o 

The new features of dispersive optical bistability in this model 

compared with the absorptive case eq. (167) are the rescaling of 

external field amplitude ro÷ro(l+A2)i/2 and the rotation of the 

the entire distribution by the angle 40. The most probable phase 

shift between the cavity mode and the external field therefore is 

neither zero nor ~/2, but intermediate to pure dissipation and pure 

dispersion. 

According to the general discussion of appendix B we are now in 

the position to decompose the drift vector into the gradient part 

and the residual part r which governs the steady state probability 

current Ji" We can write r i as a superposition of a reversible and 

an irreversible part: 

rev irr 
r i = r i + r i (172) 

Using the potential (171) we find explicitly in polar coordinates: 

Ar {sin~l IO ~ 
rev o 

r - -At 
I+A 2 \ c o s  ~ l + r 2 + r  2 

l+--i-;--2r-~ / 

I+A 2 \+sin 

(173) 

(174) 

If no external field r ° is applied, the system relaxes to equili- 

brium and r i transforms like a reversible current depending on the 

sign of A in accordance with our general consideration. A non 
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vanishing external field r drives the system away from thermal 
o 

equilibrium changing the reversible part (173) and introducing a 

non zero irreversible part (174). Notice that r irr. exists only for 
1 

a detuned system far from thermal equilibrium i.e. 

irr 42 
r ~ r 

o 

and that ri rr does not change sign with the frequency mismatch A. 
1 

b) Approximate solution in the limit of weak fluctuations 

For the general case we will utilize now the perturbation scheme 

outlined in appendix B based on the weak fluctuation limit e+O 

which allows to approximate the Fokker-Planck equation (170) for- 

mally by a Hamilton Jacobi equation. In accordance with the argu- 

ments there we will use the amplitude r of the external field 
o 

as the expansion parameter. Setting #n=i/Q ~n we obtain in zero order 

G o = (r 2 + F 2 in (l+r2)) (175) 

For the correction in first order in the field r we obtain 
o 

the following linear inhomogeneous partial differential equation of 

first order: 

~i r 1 ~i 
(- - -  (l+F2+r2)) + -- -- 

Dr l+r 2 r 8~ 

AF 2 

r(6 +-- ) = 
l+r 2 

rr 
_ o (l+F2+r 2) cos 

l+r 2 
(176) 

This equation can be solved exactly by the standard method of 

characteristics and we obtain ~45'46)'" 
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1 rr 
= -- (r 2 - 2 o___o___ 

Q /1+6 2 
COS (~-~o) + r 2 in (l+r2)) 

F 2 rr e i (~-~o) 
- 2 -  (~-i) o___q__ Im 

Q /F$~ 

r 2 

F (- ) 
l+F2-i (AF2+~) I+F 2 

177) 

where F(z) is a hypergeometric function in the notation of 

1 i~ 3 i 6+F2~ 

F(z) = 2FI (i, -----; ---- 
2 2 2 2 I+F 2 

- -  ; z) (178) 

The potential # is a unique solution of the linearized Hamilton 

Jacobi equation under the requirement of single-valuedness, and 

approximates the exact result rigorously to first order in r and 
,o 

I/Q. This is the most general result we have derived for this 

problem for finite 4,6, ~#6, and r ° by analytical methods. It illus 

trates the scope and the power of the general methods described in 

appendix B and allows us to describe the stationary statistical 

properties of dispersive optical bistability in detail. 

P 

Fig. iO: Steady state probability Po(r,~) for dispersive optical 
bistability eq. (179). 
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The expansion eq. (177) is rather involved and does not give an 

immediate and intuitive picture of the process. A simplified re- 

sult, however, which still contains most of the essential features 

of dispersive optical bistability is obtained for 6=0 by expanding 

the result to first-order in A: 

1 
P(r,~) = N exp - -- r2-2rr cos 

o Q 
(~-~o)+F2 in(l+r 2) 

r r 
+ 2AF2 o sin (~-~o)arctan - -  

/I+F z /I+F 2 
(179) 

This distribution is plotted in fig. iO. 

One new feature of the dispersive effect is that in addition to the 

hysteresis cycle for the field intensities we also obtain a hystere 

sis for the phases of the field. In fig. ii and fig. 12 we compare 

the phases of the most probable values and of the deterministic 

steady state as a function of the pump field amplitude E ° and the 

detuning parameter A; 6 has been set equal to zero for simplicity. 

This comparison gives us an idea of the value of the approximation 

scheme, because for an exact solution of the Hamilton-Jacobi 

equation the two results would have to coincide. The difference 

therefore has to be attributed to the additional expansion with res 

pect to the field intensity. 

Knowing the location of the most probable values of the stationary 

distribution we can calculate with the help of eqs. (177) the re- 

lative stability of the two branches. In this way we can determine 

the field strength r ° for which both branches are simultaneously 

stable in order to generalize the idea of the Maxwell construction 

to processes far from thermal equilibrium. 
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Fig. ii: Most probable phase shift between the cavity mode and the 
driving field (eq. 177). 
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Fig. 12: Phase at the deterministic steady state of dispersive 
optical bistability. 
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In fig. 13 we have indicated by dashed lines the special values 

of r o where global stability is exchanged by the two branches. By 

rotating this plot by 90 degrees we get a picture which qualitatively 

resembles the typical picture of the coexistence curve of a van der 

Waal gas. For 4=0, ~=O, it is easy to prove that the Maxwell construc. 
(46) 

tion is still valid 
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Fig. 13: Hysteresis of dispersive bistability. The dashed line 
indicates the exchange of global stability. 
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APPENDIX A 

I. Theorem on Optical Cohe!ent ' Transients 

A typical experiment in the optical thin sample regime consists of 

a gas filled absorption cell close to resonance with an external 

light field, For the emission following the pulsed preparation of 

finite width T we can proove that the following general statement 

holds: 

When a pulse of finite duration T (interval 0 < t < T) excites an 

optical thin sample, the coherent emission which follows lasts no 

longer than an additional time T (T < t < 2T). 

This statement can be proven rigorously (47) for a travelling wave of 

any puls shape and for arbitrary atomic relaxation parameters T I, 

T 2, when the assumption of an infinite inhomogeneous line width is 

made; i.e. D(A) = const. In the optical regime this is often an ex- 

cellent approximation. 

The formal integration of eq. (39) for the initial condition 

P (D,t=O) = O leads to 
q 

t (i~-iA -~)(t-t')+i~t' 

(t') e ; Pq (A,t) D(A)dA = -i S dA S ~4(A,t')E* -2 

-~ O 

(A.I) 

dt' 

with 

E (t) 

E (t) 
= 

0 

O<t<T 

t > x , t<O 

(A.2) 
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Interchanging the order of integration, the A-integral can be evaluat- 

ed by contour integration for time t > 2T in the upper half plane. 

Realizing that W(A) has no singularities in the finite upper A-plane, 

the integral vanishes and so does the polarization which is the source 

of the emitted field: 

S D(A) Pq (A,t)dA - O for t > 2T (A.3! 

No assumption has been made on the time dependence of the field as 

long as it can be considered to be slowly varying. This is a rather 

general result which is important for many spectroscopic experiments 

when the pulse width becomes comparable to the decay times of the 

sample. 

A similar statement can be made for multilevel systems using the same 

mathematical arguments, as long as we consider travelling field modes. 

Under somewhat technical restrictions we find that the coherent emis- 

sion of a multilevel system excited by a finite pulse width ~, will 

be zero for times larger than 

t > (i + ~ max) 
- S min" T 

max and ~ min are the largest and the smallest dipol allowed transi- 

tion frequency in the multilevel ensemble. 

For a single two,level system this result reduces to our previous 

statement, 

2. Oscillatory Free Induction Dec a_~ 

While in the previous paragraph we defined the time regime where no 

coherent radiation can be expected, it is certainly interesting to 

see how the signal will decay during the time interval immediately 

after the pulse. This is also an interesting question from the mathe. 

matical point of view, because the polarization is not an analytic 

function in time, 
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For the simplified pulse envelope 

E(t) 

= I i  t < O , t > T  

o < t < T  
0 - 

we can derive by analytical methods that the polarization of the 

radiative source - upto some unimportant factors - can be written in 

the following from " " {48) : 

D(Z~) Pq 
(A,t)dA = 12 ~ 

t > 2z 

m 
D(O) g E ° (2 t- i) J2m (g Eo /t(2T-t)) 

m=l 

t < 2T 

(A.4) 

in the limit of large field amplitudes we may use the asymptotic ex- 

pansion of the Bessel functions and obtain the simpler expression 

(2~ - t) 3/4 

tl/4 cos (g E ° V~(2T-t) - ~) (A.5) 

This oscillatory decay of the pulsed free induction decay has been 

rather unexpected, but closer inspection reveals that an experimental 

indication of the nonexponential decay has been seen before. Recently 

the oscillatory behaviour has been verified in great detail in a spin 
(11) 

resonance experiment over a wide range of parameters , and excel- 

lent agreement between theory and experiments has been demonstrated. 

In order to obtain the result (A.4) we have made the simplifying but 

not necessary assumption that the relaxation times are infinitely 

long. To demonstrate the influence of the finite width of the pulse, 

we compare this result with the free induction decay signal after 

steady state preparation, which is assumed to terminate at t = O (49) 
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f D(A) P(A,tldA = ((4g 2 Eo2 TIT 2 + 1) -1/2 - i) x 

t 2 TIT2 + 1)1/2 ) (A.6) exp - ~2 (1 + (4g 2 E O 

This is a pure exponential decay with the "power broadened" relaxation 

constant 

(A.7) 
1 
T~ (i + (i + 4g 2 EoZ TIT 2 )1/2) 

which is 180 ° out of phase with the steady state preparation 

~t 

The steady state polarization to lowest order in gE ° is linear while for 

the emitted transient field the linear terms vanish leaving a cubic 

response. 

3. Optical Coherent Transients by Phase Switchinq 

Optical coherent transients can be triggered by various methods. Every 

sudden change in the properties of the external driving field E(x,t) 

will cause transient relaxations in the atomic ensemble by which the 

system relaxes in its own time scale towards the new steady state. 

The most obvious experiment consists in applying sudden changes in 

the field intensity. A sudden change in the field frequency is follow- 

ed by a transient response of the atoms as well (50) . A rather subtle 

method consists of an instantaneous change in the phase of the driv- 

ing field. For the two previous methods it is rather obvious how the 

atomic system would respond; however, the response on a mere phase 
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shift is not immediately obvious. 

this is an interesting question, 

produced easily. 

From an experimental point of view, 

because fast phase changes can be 

We want to include this example here because it also reveals a basic 

property of the Bloch equations - the sensitivity of the solution to 

the phase relation between the atomic polarization and the driving 

field. 

As there exists no general solution of the Bloch equations we (8) 

present an approximate solution for the weak intensity limit 

g2 Eo2 TIT 2 << i. For the driving field amplitude Eo we assume that 

it suffers a sudden phase shift at time t = 0 

~, {i t < O 

E (t) = E ° (A.8) 

exp i9 t > O 

The response of the atomic ensemble is a transient evolution of the 

polarization which emits a coherent field. This field will be detect- 

ed as a superposition with the driving laser field of the same frequen 

cy, because the coherent radiation is emitted in the foreward 
(49),(50). 

direction. The transient signal observed is then given by 

"S = E (t) E(t) ~ Ig EO 14 TIT 2 sin2 ~/2 (A.9) 

2t _~t t 
exp - ~ 2  ¢ T 2 T 1 

• ( - - - e  + e ) 

1 - ¢ / 2  1 -~  ( 1 - ¢ )  ( 2 - ¢ )  

where ¢ = T2/T I. 

Due to the disturbed phase relation between the driving field and the 

atomic polarization, a transient excursion of the polarization is de- 

tected which reestablishes the absorptive phase relation again. As 

the atomic ensemble stays at resonance duringthe entire process, 

polarization - as well as energy relaxation plays a role. Only in 

the limit T 2 ~ T 1 a single exponential decay remains and the experi- 
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ment can serve as a versatile spectroscopic method. 

A rather elegant experiment which allows to determine the phase de- 

cay constant T 2 in the presence of a finite energy decay constant T 1 

can be achieved by a double phase shift in the driving field (50) 

When the phase of the field is shifted suddenly by an angle ~/2 and 

after a time T back to its original value in general a discontinuous 

response is observed at t = T. For the special time separation 

T = T 2 ½ in 2 the discontinuity vanishes and allows thereby a direct 

observation of the phase decay time T 2. A qualitative picture is 

given in the following figures. 

NULL METHOD FOR MEASUREMENT OF T 2 

I T I ~--~t 

I T t ~ - - t  

I T=  To I ~-~ t 

I . I r t 

T2 
F O R e  =17/2, T o = ~ In2 
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APPENDIX B 

Steady States without Deta!led Balance 

We assume, that a multidimensional stochastic process can be describ- 

ed by the following Fokker-Planck equation with constant diffusion: 

_ 1 3 2 
3_PP = 3 K i({xj }) P + ~ e Qij 3x. ax 3t Bx. 

i 1 3 
- -  P (B.1) 

where P({xi},t) is the conditional probability density which reduces 

to the n-dimensional 6-function in the limit t ÷ O,K. is the drift 
1 

vector determined by the deterministic equations of motion x. = K. 
1 1 

and Qij = E is the positive definite diffusion matrix which charac- 

terizes the strength of the fluctuations. Qii is assumed to be in- 

dependent of the variables x. and will later be considered as small 
] 

(~ ÷ O+), Natural boundary conditions are implied. 

The stationary properties of the process are described by the steady 

state solution of (B.I) 

~P 
o = O P = exp(- e -I @) (B.2) 

~t o 

.If the external applied forces allow the system to reach thermodynamic 

equilibrium, the potential @ as described by eq. (B.2) is proportional 

to the corresponding thermodynamic potential, The drift vector K. 
1 

then can be separated into a dissipative part di({xj}) and a reversible 

part ri({xj}) : 

Ki({xj}) = di({xj}) + ri({xj}) (B.3) 

According to the physical meaning of the variables x. we can distin- 
1 

g u i s h  b e t w e e n  e v e n  a n d  o d d  v a r i a b l e s  u n d e r  t i m e  r e v e r s a l .  D e n o t i n g  

t h e  t i m e  r e v e r s e d  o f  x i b y  x i 

x. = e. x. , ~. = -+ 1 (B.4 
i 1 l 1 
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we can identify: 

di({~j } = £i di({xj }) (B.5) 

and 

ri({xj } = "ei ri({xj }) (B.6) 

In expresslons containing E. the summation convention is dropped. The 
z (29) 

dissipative part then is of the form given by Onsager 

1 ~ 
di = - 2 Qij ~x. (B,7) 

3 

The reversible part of r. is not determined by 9, but leaves the ther- 
1 

modynamic potential and the volume element in phase space invariant: 

8¢ ~r i 
ri ~x. = 0 and ~x. = 0 (B.8) 

1 1 

Defining the reversible drift through (B.3) - (B.6), we can derive from 

the Fokker Planck equation a more general form of (B.8) which makes 

only use of the detailed balance condition of the assumed equilibrium 

case. 

~r. 
! r. ~__9_% _ ___!l = O (B.9) 

z ~x. ~x. 
1 1 

For steady states lacking detailed balance we use (B.3) and (B.7) 

instead of (B,3) , (B.6) to define r i by 

i ~% 
Ki = - 2 Qi~ a ~x. + ri (B.IO) 

3 

Inserting (B.IO) into the time independent Fokker Planck equation, we 

obtain the analogy of (B.9) 

~r. 
! r. ~ _ m = 0 (B.II) 
c i ~x i ~x i 
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Note, however, that here we did not assume, that r is the reversible 
1 

part of Ki; we merely define it through (B.IO). Therefore we can no 

longer conclude like in equilibrium that the stationary probability 

current Ji 

i 3% = r. P (B.12) 
Ji = (3 Qij ~ + Ki)Po 1 o 

J 

is reversible under time reversal transformations. 

However, the formal structure of the equilibrium theory expressed in 

terms of a thermodynamic potential carries over to the non-equilibrium 

theory expressed in terms of a generalized potential ~. This gives us 

the key for a direct comparison of equilibrium and non-equilibrium 

steady states lacking detailed balance. 

While for equilibrium states # can easily be given in terms of quadra- 

tures, in the absence of detailed balance we have to deal with an 

elliptic nonhermitian boundary value problem for which no general 

method of solution exists. 

Recognizing, however, that in many relevant physical examples fluctua- 

tions are extremely weak we may obtain the leading contribution to 

O + in the limit ~ ÷ by solving the first order problem 

I Qi~ J 8~ ~ + K. 3---9-~ ~x. ~x. i ~x. = O (B,13) 
1 J 1 

It should be emphasized that in this limit # becomes independent of 

e, while P still depends on e in the form 

!¢) P = exp (- e 

The relation (B.9) between r and ~ reduces, for e + O +, to the 
1 

o r t h o g o n a l i t y  r e l a t i o n  

r. = O (B.14) 
m ~x. 

1 
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Equation (B.13) is a first order partial differential equation of the 

form of a time independent Hamilton Jacobi equation in classical me- 

chanics for vanishing total energy. From a mathematical point of view 

we have replaced the second order boundary value problem of the 

Fokker Planck equation by a first order problem with ¢ given on a 

hypersurface intersecting the field of characteristics. Mathematical 

literature exists, where these two problems are related in the limit 

of small c for the corresponding time dependent equation. As these 

theorems are restricted to finite time intervals, it is not clear in 

which sense the soiution of (B.13) approximates the solution of the 

full stationary Fokker Planck equation. 

In the absence of a well developed mathematical framework for our 

procedure we have adopted a pragmatic attitude: If from a general 

solution of eq. (B.13) we can derive a unique single-valued one 

with the property ¢ + ~ for {x.} ÷ ~ necessary for normalizability, 
] 

it will be taken as an approximation of the corresponding solution 

of the time independent Fokker Planck equation (B.I). 

Apart from some elementary examples, unfortunately, a solution of 

(B.13) can not be obtained in general in a systematic way and we 

have to resort to further approximations based on the existence of 

a suitable small parameter I in the drift vector K. : 
1 

K = K. 1 + I K. 2 (B.15) 
1 1 1 

An approximate solution of eq. ~B.13) can then be derived systemati- 

cally in the form 

@ = ~ I n ¢ (B, 16) 
n 

n=O 

satisfying the hierarchy of equations: 

n 

aCn-i a ¢ l  8¢ 2 a@n,l 
Qij ax i axj + Kil ___nn + K. 

8x i 1 ax i 
i=o 

= O (B. 17) 
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The potential ¢, as defined by (B.2), (B.3), (B.7), and (B.14), is 

a Lyapunoff function of the deterministic equations. This may be 

seen as follows: Due to eq. (B.2) $ is a positive function. Due 

to eq. (B.14) ~ can only decrease if it evolves under the deter- 

ministic equations of motion 

~ ~. = ~# _ 1 Qij Z% ~ < O (B.18) 
$ = ~x, 1 3x. Ki - - ~ ~x. ~x. - 

1 1 1 1 

Thus the locally (globally) stable attractors of the deterministic 

equations are identified with the local (global) minima of ~. 

We summarize what actually has been achieved once a single-valued 

solution of (B.13) has been obtained one or the other way: 

(i) The steady state probability is known in the limit of 

small fluctuations; 

(ii) A Lyapunoff function of the deterministic equations of 

motion is available, characterizing the locally and globally 

stable attractors; 

(iii) The condition replacing the Maxwell construction for a first 

order type phase transition far from thermal equilibrium can 

be given~ 

(iv) The deterministic drift K can be decomposed into a gradient 
l 

part which stabilizes the attractors and a remaining part r 
i 

containing # as a constant of motion. This separation is a 

generalization of the separation into reversible and irrever- 

sible part in thermodynamic equilibrium. 

This perturbation approach has been tested for a variety of simple 

mathematical models as well as for more involved physical processes. 

Dispersive optical bistability as discussed in chapter E is an ex- 

ample of a two-dimensional highly nonlinear process lacking detailed 

balance. 
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INTRODUCTORY CHAPTER 

INTRODUCTION TO NON-LINEAR OPTICS 

The field of non-linear optics originated from three classic ex- 

periments related to the generation [i,2~ and absorption [3] of opti- 

cal harmonics of an incident laser beam by a crystalline medium. In 

the experiment of Franken et al. [i~, a ruby laser producing approxi- 

mately 3J of 6943 ~ light per one-millisecond pulse was projected 

through crystalline (~-) quartz. The emergent beam was found upon 

spectrometric analysis to contain the second harmonic (3472 ~) of the 

fundamental. The existence of the second harmonic wave was confirmed 

in two ways: it exhibited the expected energy dependence upon polari- 

zation and orientation of the incoming beam, and disappeared upon 

replacement of the quartz by an isotropic medium (glass). 

Whereas the existence of the second harmonic in this experiment 

[i] could be ascribed to the lack of a centre of inversion in a parti- 

cular member of the trigonal crystal system [4~, the later experiment 

of Terhune et al. [2] employed the crystal calcite, which possesses a 

centre of inversion. In addition, a d.c. electric field of up to 250 

kV/cm was imposed on the crystal, which was illuminated with the out- 

put beam of a iJ pulsed ruby laser. In this case, the second harmonic 

generation could be ascribed to an induced electric quadrupole moment 

in the crystal, as well as a dipole polarization term associated with 

gradients in the impressed (time-dependent) electric field. In addi- 

tion, third harmonic generation could be observed at suitable orienta- 
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tions of the laser beam tO the optic axis of the crystal. 

Kaiser and Garrett {3] investigated the generation of blue fluo- 

rescent light around 4250 ~ by two photon absorption in CaF2:Eu 2+ crys- 

tals illuminated with the red light (Xr = 6943 ~) of a ruby laser. 

The crystal CaFe has a highly symmetric (cubic) structure, the absorp- 

tion of laser radiation at 2~ r being due to the presence of O.1% Eu e+ 

ions substituted for Ca 2+. The blue fluorescent light was interpreted 

as arising through non-radiative decay to intermediate (virtual) atomic 

states (charge transfer bands), together with a radiative transition to 

the ground state. The observed magnitude of the effect was in satis- 

factory agreement with a theoretical discussion of the process [5}, 

which differs significantly in principle from second-harmonic produc- 

tion [i,2}, so that the restrictions imposed by symmetry considerations 

are entirely different [6}. 

From this brief historical introduction, we proceed to introduce 

the subject more formally through the Maxwell equations of electro- 

dynamics. 
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CHAPTER 1 

THE MAXWELL EQUATIONS 

The Maxwell equations may be written (c g s units) as: 

v ' .¢  = ~_ rr  (.e + 4 )  ( i . i )  

V x E -  

0 

c ge  

(1.2) 

(1.3) 

(i .4) 

where p and J denote the free charge and current sources, and Pb and 

~b the additional source terms arising from induced molecular polari- 

zation and magnetization within the medium under consideration. 

For present purposes we shall usually consider the situations 

where the free source terms vanish. The above equations will be used 

in their macroscopic form, in which case one may expand [7,8]: 

~ t  N = 

. . . . . . .  (1.5) 

+ CcVx~ ~ ..... ) (1.6) 

Here P, ~ .... denote the dipole, quadrupole (dyadic) and higher multi- 

pole orders in the electric polarization of the medium; M ..... denote 

the dipole and higher multipole orders in the magnetization. 

It is convenient to introduce at this point the secondary (macro- 

scopic) field quantities: 

in which case the Maxwell equations assume the form: 

V . ~  - - 4 n f  (1.9) 
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[ 7 . ~  = 0 (l.lO) 

~7× ~ - c ~-~ (l.n) 

~ x l . - I =  ~ .3- + ± ~ ( l . 12 )  
c - c ~t 

Equations (1.9)-(1.12) are however merely a concise re-formulation 

of (1.1)-(1.8); for practical purposes one requires, in addition, 

constitutive equations relating P, £ ..... to E, and M .... to B. 

Since we shall be ignoring magnetic properties of the materials under 

consideration, the latter are of no further interest for these pur- 

poses. In the former case we shall write for homogeneous media phen- 

omenological equations in the form: 

P = Y ~ ' ) E  + ,,~ L E 4-- E E-E. ..+- . . . . .  (1.13) 

= t E + E . . . . .  (1.14) 

where ~(i), ~(2), ~(3) are electric susceptibility tensors of the 

second, third, fourth .... ranks, respectively, and ~(2), (3) ..... 

tensors of the fourth, fifth ..... ranks, respectively. For clarity, 

the corresponding Cartesian component forms of the above equations are: 

= . P_. + E E + E F- F + . . . . .  
~j ,j ~j~ j 4 ~j<e j 4 

(1.15) 

summation over the repeated indices being implied. 

Such relations are extremely complicated, in view of the large 

number of coefficients of the susceptibility required for the evalu- 

ation of individual field components of the induced polarization. 

However, examination of the symmetry properties of the seven crystal 

systems, comprising thirty-two crystal classes, drastically reduces 

the effective number of coefficients, particularly when terms in equ- 

ations (1.13)-(1.16) are retained to leading order only [4}. For 

et %/(2) example, in any crystal with inversion symm ry,/~ij k is identically 

zero {6}, as in the experiment of Terhune et al. [2}. Here the 

(third) harmonic generation could be ascribed to the terms containing 

~3) and ~(2) and, in addition, a term of the type 
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cj~e j -~ 

introduced to account for inhomogeneity (which we shall not consider 

further) . 

Taking the curl on both sides of equation (1.3) together with 

(1.4) and (1.6) yields the wave equation for the electric field: 

In the simplest case of a linear susceptibility only, this reduces to: 

[] = o (l l=) 

where the dielectric tensor (dyadic) 6 is related to the susceptibility 

~(i) by: 

~- (1.19) 

~d ~j ~j 

From simple considerations of energy flux [9}, or by means of standard 

thermodynamic relations [IO}, one readily shows that the dielectric 

tensor is symmetrical (6ij = eji)' and therefore possesses only six 

independent components. By a suitable choice of coordinate axes, e 

can be represented by a diagonal matrix; these are called principal 

axes of the crystal, and in this system the diagonal elements of e will 

be denoted simply by ej(j = 1,2,3) {ii]. The components of D and 

are then related by: 

~ ~- G ~ (1.20) 
J j J 
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CHAPTER 2 

ELECTROMAGNETIC WAVE PROPAGATION IN A 

LINEAR ANISOTROPIC MEDIUM 

Consider a monochromatic plane wave 

( 2 . 1 )  

( 2 . 2 )  

propagating in a linear, anisotropic medium. In such a medium, the 

amplitudes ~0 and ~o are constant. With V ~ ik, the wave equation 

(1.18) immediately yields: 

( J c ) . E =  o (2.3) 

where I denotes the unit dyadic. Now express the wave vector k as: 
N 

~ { ~ -- ~ ~ (2.4) 
~ V N 

in terms of the unit vector (n) in the direction of the wave normal 

(also called here the direction of propagation), and v the phase velo- 

city in the medium (which will turn out to depend both upon the direc- 

tion of propagation and plane of polarization of the wave). We define 

also the principal velocities in the crystal as: 

c (2.5) 

J ?V d 
in terms of the principal dielectric constants ej, the subscript j = 

1,2,3 again denoting the principal axis (xyz) system, relative to which 

the direction cosines of the wave normal will be denoted by n i . 

Thereby, equation (2.3) can be recast in the form of the homogeneous 

system (j = 1,2,3) : 

3 

• V. A 
8 ~=1 L 8 

NOW f r o m  e q u a t i o n s  ( 1 . 1 ) ,  ( 1 . 5 ) ,  

medium: 

i) ~- ~ 0 (2.6) 

J 

(1.9) and (1.19), we have for a linear 
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2.1"3 = n . ~ - E  = o ( 2 . 7 )  

which implies that whereas the displacement will always be perpendicu- 

lar to the direction of propagation, the electric field will not be, in 

general. Only in certain special cases will n-E = O, these being: 
N 

(i) isotropic crystals (i.e. cubic in structure); (ii) propagation 

along one of the principal axes of any crystal; (iii) the ordinary 

wave in a uniaxial crystal (see below); (iv) propagation along or at 

right angles to the optic axis in a uniaxial crystal (see below). 

Now direct substitution of D. in terms of Zn. E. from (2.6) in 
3 i z l 

(2.7), together with (1.20), yields the celebrated Fresnel equation 

[ 10-13 } : 

3 a 

V a -  V :  = O.  ( 2 . 8 )  

An analysis of this equation, which is quadratic in v 2, for the general 

case ez < 62 < ea shows that for every direction of the wave normal, 

there are two distinct phase velocities v' and v" (the phenomenon of 

birefrinqence), which will not coincide unless n 2 = 0 [ii}. In that 

case (v' = v" = v2), there are two possible directions of the wave nor- 

mal given by 

v ~ _  v ~ _  , - , : (v  ~ ' -  v ~ )  = o ( 2 . 9 )  
I J 3 

These two directions in which there is only one phase velocity are 

known as the optic axes of a biaxial crystal. With the above label- 

ling of the principal axes, the optic axes lie in the (x,z) plane and 

are symmetrical with respect to the x-axis. 

It should be pointed out that the derivation of equation (2.8) 

shows it to be inapplicable in the special case of propagation along a 

principal axis. Here, however, two phase velocities are again obtain- 

ed [13}, namely the principal velocities 

I I i  
V ~--- c c 

c o r r e s p o n d i n g  t o  n .  : Z, a r e s u l t  w h i c h  f o l l o w s  i m m e d i a t e l y  f r o m  e q u a -  
] 

tions (2.6). 

The special case of the uniaxial crystal (only one optic axis) 

occurs if 6z = ee, equation (2.9) predicting that this axis lies in the 

z direction. With @ denoting the angle between n and the z axis, 
N 

Fresnel's equation (2.8) for propagation in the direction (e,~) with 

respect to the z axis yields the following two solutions for the phase 
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velocity, in terms of v o = v I = v 2 and v e = v3: 

V ~ V ~- (2.10) 
o 

V~ V ~ V = c°s~Q + e sin ~ (2.11) 

The wave travelling with velocity v o independent of the direction of 

propagation is termed the ordinary wave. The other wave is termed the 

extraordinary wave, its velocity depending upon the direction of propa- 

gation. The latter will not obey Snell's Law when refracted at the 

surface of a uniaxial crystal. Only for propagation ialong the z axis 

(~ = O) are the two velocities the same. In a direction perpendicular 

to the z axis (~ = n/2), the velocity of the extraordinary wave is Ve. 

The corresponding ordinary (~o) and extraordinary (~e) refractive indi- 

ces of the crystal may be defined by: 

= /< 

Equation (2.11) may now be recast as an expression for the refractive 

index (~ = C/v) applicable to propagation of the extraordinary wave: 

~e(G) = ~/~°/~e (2.12) / , 
/ 

(Note therefore that ~e = ~e(Z/2 ), from (2.12).) 

If ~e > ~o (i.e. es > 61 = e2), the birefringence is said to be 

positive, whereas if ~e < ~o (i.e. 63 < el = e2), the birefringence is 

said to be negative. The corresponding crystals are called positive 

or neqative uniaxial, respectively [9]. In the former case, the ordi- 

nary wave is faster, in the latter case it is slower. 

A supplementary relation to (2.8) for v 2 in terms of the direction 

cosines (Tj) of D with respect to the principal axes may also be deri- 

ved [ii] from equation (2.6): 

v ~ v 
J d 

(2.13) 

We now proceed to examine the inter-relationships of the various 

fields in more detail. From equation (1.12) it follows that: 
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D~ :-/~ ~_×~~ (2.14) 

(with ~ = C/v as before). Thus, D is perpendicular to both n and H. 

From equation (1.3) it follows in addition that: 

hl = n x  £ (2.15) 

while equations (i.ii) and (1.12) together yield: 

=/[C -<~ E ) £  • (2.1~) 

Thus, while H is perpendicular to both n and E, the latter is coplanar 

with n and D but not in general perpendicular to n unless the crystal 

is cubic. 

Therefore, the direction of energy flow associated with the wave, 

given by the Poynting vector: 

s : ~ E ~ ~J~ (2.1~) 

is not along the normal to the surfaces of constant phase in an aniso- 

tropic crystal. From (2.15), one finds that: 

from which a velocity of energy propagation u may be obtained from the 

definition: 

= U u (2.19) 
N 

in terms of the electromagnetic energy density: 

' ( -~- J + 3. ~) (2.2o) 

(note that the electric and magnetic contributions to U remain equal 

for anisotropie crystals). Equations (2.18) to (2.21) reveal that u 
N 
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and v are related by 

v = ~ . ~  (2.22) 

or the phase velocity is equal to the projection of the energy velocity 

on the wave normal. 

Now the fields corresponding to the two distinct solutions (v' and 

v") of the Fresnel equation (2.8) may be shown by (2.6) to have the 

property that [ii]: 

9!. = 0 

Hence, since D' E' n and D" E", n form two sets of coplanar vectors, 

~ ' - E  ~ = ~ " . E '  = 0 . ( 2 . 2 4 )  

However, E'.E" ~ 0 for the two solutions of the Fresnel equation cor- 

responding to a particular direction of propagation (n). 

From equation (2.6) together with (1.20), it follows that [ii]: 

(2.25) 

and 

E ( ,  - - = E (2.26) 

Hence the directions of D, E and H (from (2.15)) are known provided that 

v is known. Thus, if n is given, v' and v" are determined from (2.8) 

and thereafter the directions of the components of the two waves are 

specified uniquely, except for the special case discussed below. On 

the other hand if D is given E follows at once and the direction of n 
N N 

is known from the fact that it is coplanar with D and E, and perpendi- 

cular to D. In this case, v is derived from (2.13) and H from (2.15). 

In the case of propagation along the optic axis of a crystal (i.e. 

when v' = v" = v2), however, we see from (2.25) and (2.26) that the 

directions of D and E are no longer uniquely determined. Therefore, 

plane waves can propagate along an optic axis with any arbitrary direc- 

tion of polarization. 

A special case of interest is the propagation of the ordinary wave 

in a uniaxial crystal. Equation (2.25) implies in this case the vani- 

shing of D z, and hence the condition (2.7) requires that D be perpendi- 

cular to the plane containing n and the optic axis. Similarly, equa- 
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tion (2.26) implies the vanishing of E z, in which case equation (1.20) 

for the principal axis system implies that n-E = O for the ordinary 

wave. Thus, the ordinary wave in a uniaxial crystal is polarized per- 

pendicularly to the optic axis. 

Conversely, (2.23) now requires that D for the extraordinary wave 

lie in the plane containing n and the optic axis. Consequently, 
N 

(1.20) and (2.26) together mean that n-E cannot be zero except for the 

special cases of n along or perpendicular to the optic axis. 
N 

Referring to equation (2.18), we therefore see that, whereas the 

direction of energy propagation (the ray directi'on) always coincides 

with the wave normal in the case of the ordinary wave in a uniaxial 

crystal, the two directions will not coincide in the case of the extra- 

ordinary wave unless the wave normal is either along or perpendicular 

to the optic axis. 

The above comments are confirmed by the following useful expres- 

sions for the angles involved in wave propagation in a uniaxial crys- 

tal. We define as before the angle between the wave normal (direction 

of propagation) and the optic axis as @. Equation (2.12) yields: 

(2.27) 

Let ~ denote the angle between the electric field direction and the 

optic axis. With 

V 
I 

equations (2.25) and (2.26) both reduce to: 

~-I I ~l~ 0 ~ ' ~  
(2.28) 

whence one obtains 

----- ~ 0 (2.29) 
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Let ~ = ~ ~ ~ denote the angle between the direction of energy propa- 

gation (ray direction) and the optic axis. (The relationship between 

the appropriate quadrants for 8 and ~, from (2.27) and (2.29), must be 

carefully considered here.) From equations (2.27) and (2.29) one 

therefore has: 

-~c~r~ ~0 -=-- +- ~ = {-o.~0 (2 .30)  

Therefore in positive uniaxial crystals (~o < ~e), ~ < @, whereas in 

neqative uniaxial crystals (~o > ~e), ~ > 8. 

The angle (~) between D and E, which is also the angle (~) between 

the wave normal (n) and ray (S) directions, is given by ~ = 18-~I, and 

may therefore be calculated from equations (2.27) and (2.30): 

L 
(2.31) 

For an alternative presentation of the various geometrical rela- 

tionships for extraordinary wave propagation expressed by equations 

(2.27), (2.29), (2.30) and (2.31), the reader is referred to Appendix 

IV. 
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CHAPTER 3 

OPTICAL HARMONIC GENERATION IN A NON-LINEAR MEDIUM 

INTRODUCTION 

In this section we shall consider the general phenomenon of opti- 

cal harmonic generation and related processes, and thereafter the res- 

trictions imposed by crystal symmetry. In order to facilitate the 

understanding of the problem a simple physical model will be described 

for the polarization of the medium. Now, whereas a complete treatment 

of the problem can in general be given only within the framework of the 

quantum theory, many polarization properties can be analyzed on the 

basis of the classical anharmonic oscillator [4]. This in turn pre- 

supposes that the frequencies under consideration are sufficiently far 

removed from absorption bands, i.e. fall in regions of optical trans- 

parency for the particular crystal [4,9]. 

Below, we shall consider the effect of the first non-linear term 

--~(2)EEE in equation (1.13) when two fields: 

are impressed upon a non-linear medium. Evaluation of the second- 

order polarization shows that four types of interactions arise (called 

three-frequency [4] or three-wave [14] interactions), one of which cor- 

responds to the generation of waves at the sum frequency: 

For this process, a particular component of the non-linear (NL) polari- 

zation can be written: 

(3.1) 

Initially, it will be necessary to retain explicitly the frequency 

dependence associated with each of the three principal axes (ijk) as 

implied [14~ by equation (3.1), and thereafter consideration will be 
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given to situations which permit one to simplify this detailed form of 

description [6,153 . 

One important general property of the susceptibility tensor 

~(n) is immediately apparent on consideration of the reality of the 
ijk...q 

physical fields P and E: from a basic theorem of Fourier analysis it 

follows that [16}: 

~.c~B(_~_~o,~.... - ~  = ~<c~( 
~ j  ,,... ,~ ~j~ .~ . .~ ,  , . - - -  ~ ~°') . 

(3.2) 

Since the susceptibility itself must be a real quantity, it follows 

that each tensor component of the type (3.2) must be an even function 

of frequencv. (For simplicity, we shall however employ complex elec- 

tric fields in this chapter. In that case, allowance for dissipation 

in the medium would yield an imaginary part to ~ ~n) which would, from 
# % 

(3.2), be an odd function of frequency [16}.) 

As a preliminary to this investigation, however, an important 

question needs to be answered, namely the rSle of the local fields in 

determining the non-linear susceptibilities in equation (1.13). 

(a) THE RELATIONSHIP BETWEEN MACROSCOPIC AND LOCAL FIELD QUANTITIES 

Whereas the fields appearing in the Maxwell equations (i.i)-(1.4), 

-(1.9)-(1.12) are macroscopic quantities [73 (i.e. averages over macro- 

scopic volume elements containing many atoms, in which microscopic 

fluctuations are smoothed out), a dynamical model for the polarization 

of the medium would require one to take into account the local field at 

the position of a particular molecule or atom in the crystal lattice. 

In a linear (L), isotropic medium (a fluid or crystal with cubic 

symmetry), the local field E is related to the macroscopic field E by 
N 

the Lorentz formula [7,83: 

= E + ~ (3.3) 

by (1.13) and (1.19). 

Now certain crystals like ZnS are isotropic (cubic, class Td) but 
%/(2) 

lack inversion symmetry {4,17]. Thus z,ij k is non-zero for all i~j~k 
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which implies that second harmonic generation can readily take place 

(see below). The corresponding form of (3.3) now becomes: 

77 pN- 

while the displacement may be written: 

In terms of the local electric field and susceptibility, 

and we f ind  by (3.5): 

(3.8) 

where the permittivity e of the medium has been obtained from ~ (I) by 

the Clausius-Mossotti equation [7,8]: 

E - i 

Thus by (3.6) : 

@+ ~ (3.11) 

Equation (3.11) shows that the effective macroscopic non-linear 
1 polarization is ~(e + 2) times the value calculated from the local 

fields by: 

< (312) 

Thus, from (3.1), (3.4), (3.11) and (3.12), i.e. considering the non- 

linear terms to be small perturbations on the linear terms, we obtain 

C14]: 
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~, 3 /', 3 X ( '%~ ~ , , ~ " )  . (3 .13 )  

This important relation, which may be generalized to higher order {4], 

shows that the macroscopic quantities ~(2) follow the same symmetry 

relations as the microscopic quantities ~(2). Armstrong et al. [14] 

have shown that the same conclusion holds in the case of anisotropic 

crystals (see Appendix I). 

This is the justification for our not making a careful distinction 

between macroscopic and local field quantities in equations (1.13)- 

(1.16), and we shall henceforth omit the tildes once more. When nece- 

ssary, the distinction can readily be made, by means of the relations 

discussed in this section. 

We point out, lastly, the physical interpretation {14] of the non- 

linearity in equation (3.9) leading to (3.11) and (3.13). Owing to 

the interaction between the non-linear dipole moment at one lattice 

site and the linear dipole moment at another site, the local field at 

the various sites and, therefore, the linear dipole moment, is affected 

by the existence of such a non-linearity. This in turn changes the 

permittivity (dielectric tensor ~) of the medium. The main approxima- 

tion introduced in (3.13) has been to ignore the interaction between 

non-linear dipole moments at different sites {4,14]. 

(b) MEDIA WITH QUADRATIC SUSCEPTIBILITY 

Evaluation of the second-order polarization ~(2)EEE in equation 

(1.13) shows that four types of interactions arise when two fields: 

L  ,(rl - 

are impressed upon a non-linear medium [4]. 

(i) Static , non-linear terms of the type: 

(~ £~ 21" ~ (o 
) & K  

This effect might be called rectification of high-frequency elect- 

romagnetic waves in a quadratic medium, but is not of great inter- 

est for present purposes. 
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(ii) Second harmonic qeneration, i.e. terms of the type: 

( i i i )  Frequency summation terms o f  the  t ype :  

~ (~ 

(iv) The generation of waves of the difference frequency by the 

interaction of two waves in a quadratic medium, i.e. terms of the 

type: 

% 

An interesting special case of these processes is termed the lin- 

ear electro-optic (Pockels) effect (4,8}. The index of refrac- 

tion for a high-frequency electromagnetic wave is changed when a 

static or low-frequency field ~2 is applied. The corresponding 

non-linear polarization contains terms of the type: 

• c - 

(c) MEDIA WITH CUBIC SUSCEPTIBILITY 

The effects arising from the second non-linear term~(3)EEE in 

equation (1.13) when three fields: 

a r e  i m p r e s s e d  u p o n  a n o n - l i n e a r  m e d i u m ,  m a y  b e  e n u m e r a t e d  a s  f o l l o w s  

{ 4 ] .  

(i) Sum frequency qeneration, from: 
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With ul = 0, this becomes sum frequency generation in the presence 

of a static field. 

(ii) Sum and difference frequency qeneration: 

) < ~ <  ~ ~ ~ - ~ ) E  E E * ~ p L [ ~  + ff~ - ff~). 
- ( ~ ,  + ~ -  ~)~] 

i 5* * 

Again, with ma = 0, this becomes difference frequency generation 

in the presence of a static field. 

(iii) Frequency triplinq of an electromaqnetic wave: 

(iv) Frequency doublinq of an electromagnetic wave by applica- 

tion of a static field (we = 0): 

(v) Chanqe of the index of refraction of a medium in the field 

of an intense electromagnetic wave, owing to polarization terms of 

the type: 

(d) A DYNAMICAL MODEL FOR THE POLARIZATION 

We consider firstly the situation in a linear medium. Denote by 

x. = x i ~i the displacement of electrons or ions corresponding to the 

ith normal mode, which obeys [4]: 
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Here Mi, F i and k i are respectively the effective mass, damping cons- 

tant and harmonic force constant of the mode x. ; the unit vector ~. is 
1 Nl~ 

directed along the electric dipole moment of the oscillation, while E 
N 

denotes the local electric field strength. The dipole moment per unit 

volume (linear polarization) is given by: 

C 

where N is the number of atoms or molecules per unit volume and the 

summation extends over all electronic and atomic normal oscillations 

with non-zero dipole moment, i.e. oscillations which are optically ac- 

tive in the absorption spectrum. 

"The normal modes of electrons and atoms must conform to the sym- 

metry properties of the molecule or, for a single crystal, of the crys- 

tal as a whole. Thus, for example, those modes which are optically 

active in absorption and in Raman scattering satisfy, first of all, the 

requirements of translational symmetry, according to which they must be 

invariant under displacement by any lattice vector. Accordingly, the 

only normal modes considered are those which correspond to in-phase 

displacement of all homologous atoms in all unit cells of the crystal. 

Thus the translational symmetry requirement enables us to restrict the 

discussion for crystals to a single 'crystal molecule' or unit cell. 

Besides translational symmetry of crystals, isolated molecules display 

various other types of symmetry. In many cases, a knowledge of the 

symmetry and structure of the molecules enables one to determine the 

possible normal modes and corresponding dipole moments. For a suffi- 

ciently high degree of rotational and reflection symmetry, some of the 

modes (fully symmetric oscillations) have zero moment and therefore do 

not contribute to the sum (3.15)" [4]. 

Now with the normal angular frequency ~oi = , and considering 

the crystal to be a weakly absorbing dispersive medium, i.e. ignoring 

the F i term in (3.14), the steady-state solution corresponding to: 

= i - (3.16) 

is simply 

21c(~ __ co~) (3.17) 
oL 
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This yields a linear polarization: 

(3.18) 

and thus the linear susceptibility (Cartesian components): 

(3.19) 

NOW for a medium with quadratic susceptibility (a quadratic med- 

ium), equation (3.14) may be modified by addition of the appropriate 

non-linear correction to the potential energy U of the molecule: 

[,,j" = ~- -~L "z_ :~ --4- /k~T ( 3 . 2 0 )  
L 

i 

This correction term arises from the interaction (coupling) of the nor- 

mal modes. The lowest order of these is cubic, which dominates higher 

order terms in weakly non-linear media: 

% 3c 9c A U =  ~- .. /3~j,< " ~i '< (3.21) 

where the matrix ~iik is invariant under any permutation of the indi- 

ces. As shown below, such a correction term can only exist in a crys- 

tal which lacks a centre of inversion. (It is interesting to note 

that the same restriction applies in the case of piezoelectric crys- 

tals, which belong to exactly the same classes as those which admit 

quadratic susceptibility {i0].) 

Now the resulting non-linear equation: 

~ - ~ 4 l : ~  ~ 7  ~ + g . ~  + ~j~ ,; . . . .  (3.22) 

cannot be solved exactly. However, we are interested in weakly absor- 

bing dispersive media, for which F i may be set equal to zero, and oh- 
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tain an approximate solution to (3.22) by the perturbation method. 

With E again given by (3.16), we write: 

L N &  
Z = ~ + % (3.23) 

where I xpl << Ix L] by assumption (thus 1 I << Ix I-i), and x L is 

given by (3.17). Upon substitution of (3.23) into (3.22) and on col- 

lecting the first-order correction terms, one obtains for the real 

(i.e. physical) non-linear displacement: 

3 c  a_ 

(3.24) 

Thus, 

where: 

p NL- 

/ ~ . ~  ~ (~ot- # ) ( ~ -  ~9 

X cos a ( ~ . ~  - ~,,-t) 

( o~ - 4_~o ~)  
(3.25) 

and therefore (in Cartesian components): 

~.bc l 
~jJ< 

i 

(3.26) 

Completely analogously, one finds on combining two wave fields 

~i exp i(kl- ~- ~zt) and ~2 exp i(ke. ~-~2 t) two quadratic susceptibi- 
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lity terms, corresponding to sum and difference frequencies ~z ~ ~2, 

the one for ~s = ~z + ~2 being: 

~j< 
(3.27) 

where it is understood that components a, b, c are associated respecti- 

vely with angular frequencies ~s, ~z and w2, respectively. 

Examination of equation (3.27) reveals that it satisfies the im- 

portant result [14] that: 

~bc 3 
6 0 3 -  cO~ ~ ~6 c c~ [cO' ;- cOa, cO3~ . 

(3.28) 

This, the most general permutation symmetry relation [14] states that 

the frequencies may be permuted at will provided that the Cartesian 

indices a, b and c are simultaneously permuted so that a qiven frequen- 

cy is always associated with the same index. 

However, (3.27) also satisfies the general relationship [4]: 

~!~3 ; ~, ~ ~ ~(~3) ~,~ (3.29) 

i.e. that ,~(2)abc is always symmetrical in the last two indices, as well 

as the weaker Kleinman symmetry condition [15] ("conjecture" [6]), that 

~a (2) is symmetrical in all three indices (i.e without permutation of 
bc 

the corresponding frequencies): 

~ ~ 3 ~  ~ = /~ ~(~3~ ~, ~ = ~ 3 ~ ,  ~ (3 .30)  

Now a more r i g o r o u s  d e r i v a t i o n  o f  the  s u s c e p t i b i l i t i e s  t han  t h a t  

p r e s e n t e d  h e r e ,  i . e .  w i t h  i n c l u s i o n  o f  ene rgy  d i s s i p a t i o n ,  wou ld  show 

t h a t  whereas r e l a t i o n s  (3 .28)  and (3 .29)  a re  r i g o r o u s l y  and g e n e r a l l y  

v a l i d ,  (3 .30)  wou ld  h o l d  o n l y  i n  the  l i m i t  o f  s u f f i c i e n t l y  weak d i s p e r -  

s i o n ,  and thus  p r o v i d e d  t h a t  the  c r y s t a l  i s  e f f e c t i v e l y  t r a n s p a r e n t  

t h r o u g h o u t  a s p e c t r a l  r e g i o n  t h a t  i n c l u d e s  a l l  the  f r e q u e n c i e s  i n v o l v e d  

in the interaction [6,9]. While this very useful simplification [15] 

may be assumed to hold within experimental accuracy in many (if not 
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most) cases of interest, it would of course be invalid were an absorp- 

tion band to lie between any of the relevant frequencies. It there- 

fore does not apply to the linear electro-optic (Pockels) effect, or to 

difference-frequency generation of far-infrared wavelengths [18]. An 

interesting case has been reported in the literature [19], in which the 

crystal LiIO a (class Ca) was shown to possess a weak but non-vanishing 

second-order susceptibility ~(2) ~(2) contrary to Kleinman's con- 
/'123 = -~213 ' 

jecture. The physical basis of Kleinman's arguments {15] has been 

re-examined by Franken and Ward [6], who also present a validity cri- 

terion for judging the applicability of this approximation. 

In the case of crystals possessing a centre of inversion, the 

quadratic susceptibility vanishes identically (see below). The pre- 

dominant contribution to the non-linear susceptibility then arises from 

a quartic correction to the molecular potential energy U [4]: 

~U= ~ x x : ~  :~ (3.31) 

where the matrix ~ijkg is invariant under any permutation of the indi- 

ces. Equation (3.22) is now replaced by: 

. t ' l  ~- , ,~  + ~ + # ~  % :  + ° < ~  i ,~ ::,:. ~ ::,: = - ~ { '  " (3.32) 

Upon substitution of (3.23) into (3,32) and on collecting the first- 

order correction terms, one obtains for the real (i.e. physical) non- 

linear displacement: 

D C  ~ - -  

~_~ t4. ~ b%~ ( ~oj J ) ( ~  - ~)(~:~ ~)  

X < 3 ~os(~-~-~e) 
(3.33) 
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where: 

NL.  

P ~3~ ' )  = ~- 

- ~ ' ) C ~  ~ - ~ ) ( ~ L  - ~ )  ( ~ , -  ~ ~ ) C ~ o  i o~ o~ 
(3.34) 

and therefore the Cartesian components of the third-order susceptibili- 

ty are given by: 

~<~ 

~ f  ~ A 

Completely analogously, one finds on combining three wave fields 

CI exp i(~z.~- wit), C2 exp i(~2-~-~2 t) and Cs exp i(~3.~- ~3 t) four 

quadratic susceptibility terms corresponding to angular frequencies: 

CO : CO ~ CO + CO - CO = CO +- C5 ¥ CO 
4 ; - a -- 3 ) ~ i a 3 

Such interactions are termed (counting the mode at the resultant fre- 

quency) four-frequency [4] or four-wave {14] interactions. The sus- 

ceptibility corresponding to ~4 = ~i + ~2 + ~3 may be written: 

.__ -- L d . ~ 

~ ~ ~  (~- ~0)(~ ~I(~K- ~II~ ~- ~I 

( 3 . 3 6 )  

where it is understood that components a, b, c, d are associated res- 

pectively with angular frequencies ~4, t0z, w2 and w3. 

It is clear that (3.36), analogously to (3.27), satisfies the re- 

sult that [14]: 
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1 6c~ C~D • - - C ~  c~3., ¢-.,3ff. ) (3.37) 

As in the case of (3.28), this general permutation symmetry relation 

may be stated: the frequencies may be permuted at will provided that 

the Cartesian indices a, b, c and d are simultaneously permuted in such 

a way that a qiven frequency is always associated with the same index. 

However, (3.36) also satisfies the general relationship [4]: 

(3.38) 

i e. that ~(3) is always symmetrical in the last three indices. In 
" ~'abcd 

addition, it satisfies the weaker Kleinman symmetry condition [15~ that 

~a (3) is symmetrical in all three indices (i.e without permutation of 
bcd 

the corresponding frequencies): 

(3.39) 

AS in the case of (3.30), a more rigorous derivation of the sus- 

ceptibilities than that presented here, i.e. with inclusion of energy 

dissipation, would show that whereas relations (3.37) and (3.38) are 

rigorously and generally valid, (3.39) holds only in the limit of suf- 

ficiently weak dispersion, and thus provided that the crystal is effec- 

tively transparent throughout a spectral region that includes all the 

frequencies involved in the interaction [6,9]. 

Comparison of equations (3.19), (3.27) and (3.36) suggests the 

validity of an empirical rule due to Miller [20], implying that since 

the non-linear susceptibilities consist of products of terms which en- 

ter also in the corresponding linear (first-order) susceptibilities for 

the relevant frequencies, materials with hiqh refractive index tend to 

be more stronqly non-linear in their optical properties. We shall 



288 

examine the basis for Miller's rule {20] in more detail below. 

(e) EXPERIMENTAL NOTATION 

~/(2) 
Corresponding to the second-order non-linear susceptibility/\ijk 

used above, one finds in the experimental literature a non-linear co- 

efficient dij k. The relationship between the two is {9}: 

d = ~ ~ (3.40) 
~jK ~j 

The reader should note carefully the ambiguity that exists in the lite- 

rature concerning the omission or inclusion in relation (3.40) of the 

factor of two {9]. It is also common practice at this point to employ 

a parameter d with contracted indices in the notation of W. Voigt {16]. 

One sets: 

= d (3.41) 

where m = i, and n = j for j = k, n = 4 for j + k = 5, n = 5 for 

j + k = 4 with j / k, and n = 6 for j + k = 3. When employing these 

parameters with contracted indices in matrices, the reader should note 

the cautionary remarks in Section 2.9 of Ref. {9]. 

A further grouping of parameters dmn into an effective parameter 

def f (or simply d) is also employed {9} when summation is carried 

out over a number of interacting waves in various states of polariza- 

tion. 

(f) SYMMETRY TRANSFORMATIONS 

Consider a particular physical situation described by equation 

(1.13), that is for given orientations of the medium, impressed elect- 

ric fields and resultant polarization. One can transform from a des- 

cription of the phenomenon in one chosen set of coordinate axes (e.g. 

the principal axes of the crystal, as in Chapter 2 above) to a new co- 

ordinate frame. The new axes are related to the old by a transforma- 

tion A which can be written as a (3 x 3) matrix representing an arbitra- 

ry combination of rotation and inversion. In the new frame one has: 

= (3.42) 
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If A is now restricted to be a symmetry transformation, then all pro- 

perties of the material are identically described in both coordinate 

frames, so that: 

~2 c~ = A A A 2~ (3.43) 

These symmetry transformations correspond to so-called macroscopic 

symmetry elements in crystals [17}, which reduce to the following: 

i) centre of symmetry (inversion), 

ii) mirror plane, 

iii) i-, 2-, 3-, 4- or 6-fold rotation axes, 

iv) i-, 2-, 3-, 4- or 6-fold inversion axes. 

Possible combinations of macroscopic symmetry elements are called point 

qroups, of which there are just 32. Crystals are divided into 32 

crystal classes according to the point-group symmetry they possess. 

As an example of a symmetry transformation, choose A to be the 

inversion transformation A i = -5~i. Equation (3.43) then yields: 

= - -  ~- O (3.44) 

from which one may conclude that second-harmonic generation cannot take 

place in crystals which possess a centre of inversion. By an exten- 

sion of this argument, it may be shown that for crystals with a centre 

of inversion, all tensors of odd rank are zero. 

Of the various crystal classes, there remain 21 without a centre 

of inversion. Of these, one (cubic, class O) is of no practical im- 

portance since all components of the second-order susceptibility vanish 

[16} on the grounds of other symmetry transformations which the crystal 

possesses [17}. The remaining 20 classes, which also exhibit piezo- 

electricity [iO), are listed in Appendix II. 

(g) MILLER'S RULE 

Consider again equations (3.19) and (3.27). In a crystal, the 

mode directions ~. are tied to the crystallographic axes [4}, and NI 

therefore by choosing the principal axis system, one obtains a diagonal 
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representation for ~(i) , as already seen in Chapters 1 and 2. Thus, 

/ L 

-= / ~  ~ ~ (3.45) 
' ~  ~ ' t '1_~¢~o~ - . ~ )  

where the prime indicates that the sum includes only those modes which 

can be projected onto principal axis a. In this way, (3.27) may also 

be simplified as follows: 

/ 

, 

o.b= ~" ~ " ~ " ) ~  ~,~ / " l -P l , i - t ' l ,~ (~o~--  3/- o~- ,-" °,~ - of) (3.46) 

where the prime indicates that the sum includes only those normal modes 

lying along principal axes a (modes i), b (modes j) and c (modes k), 

respectively. 

Then, a simple heuristic argument [9,20,21] suggests that one may 

approximate ~(2) by: 
Z'ab c 

? (~) ~.(:~ ~:~ ~ ~0~ (3.47) ~(~3; c o  o~ = A ( ~ ( ~ , )  A (~'~ ~ ~ 

where the third-rank tensor ~abc may also be expected to obey the 

Kleinman symmetry condition [15]. Now it is clear from (3.46) that 

relation (3.47) cannot be derived rigorously from the preceding equa- 

tions. However, Miller [20} has found that whereas experimental val- 

ues for ~(2) vary over a range of about 600 for the various crystal 
/~abc 

types he considered (all suitable for optical second harmonic genera- 

tion), the corresponding values of Aab c calculated by (3.47) from the 

experimental data were always within a factor of two of their average 

value. Moreover, ~abc for a particular coefficient for crystals in a 

given symmetry class were found to be equal, to within ! 50%. 

Experiments by Patel {22,23] verified that Miller's phenomenologi- 

cal rule can be applied to infra-red fundamental wavelengths as well. 

In his work, a 10.6 ~ CO 2 laser was employed, together with the follow- 

ing crystals: Te and Se (Class Ds); ZnS, CdS and CdSe (Class Csv); 

InAs, GaAs, ZnS, CdTe, ZnSe and ZnTe (Class Td). In addition to good 

qualitative and quantitative agreement with the paper of Miller [20], 

the Kleinman symmetry relation [15] was verified within experimental 
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accuracy for ZnS, CdS and CdSe. 

An attempt to account for these observations on both classical and 

quantum-mechanical grounds led to the conclusion that the physical ori- 

gin of the non-linearity could be ascribed to the shape of the poten- 

tial at a lattice site [211, and therefore that the magnitude of the 

non-linear polarization is determined primarily by geometrical factors 

rather than by the detailed structure of the atomic wave functions. 

This conclusion in fact PrOvides a justification for the essentiallyI 

classical description of non-linear optics in the present review. 

(h) ORDERS OF MAGNITUDE 

A simple order-of-magnitude estimate of the ratio between the 

first-order non-linear polarization and the linear polarization (or 

equivalently between non-linear polarizations of successive orders) may 

be obtained as follows [21,24]. Restoring the neglected damping terms 

in (3.17) et seq., and using the abbreviated notation of Bloembergen 

[24]: 

we have: 

/"1 

using simply the electron mass for each M i, and ignoring the three- 

dimensional aspects of the problem. 

"Now it may be expected from the physical nature of electronic 

binding that if the deviation x is of the order of the radius a of the 

equilibrium orbital of the electron, the non-linear force ~x 2 is of the 

same order as the linear force m~a = elEat I , where Eat is the intra- 

atomic electric field binding the electron" [24}. Thus with both 

and 2~ well off resonance, we may estimate: 

P~(~) I ~ ~." I E~,I 

The electric field amplitude of the light wave must therefore be com- 
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pared with the electric field inside the atom, which is typically of 

the order of 3 × 10 s volts/cm. 

It may thus be concluded [24] that even for the high power flux 

densities (NIO I° watts/cme), e.g. in the focus of a Q-switched laser, 

the non-linear response can still be treated as a small perturbation, 

since l~/Eatl N 3×iO -s in this case. 
i . 

With a resonance occurring in one of the D factors, this ratio 
mwo 

would be enhanced, however, by the substantial factor F It should 

be pointed out, however, that even if the magnitude of the non-linear 

effect is small, its detectability is due to the excellent discrimina- 

tion in the various experiments discussed here. Of primary importance 

in this regard is the subject of the following chapter. 
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CHAPTER 4 

PHASE MATCHING IN CRYSTALS 

(a) THE THREE-WAVE INTERACTION 

Consider a medium possessing quadratic susceptibility, on which 

the wave fields: 

are impressed. 

cy: 

As discussed in Chapter 3, a wave of angular frequen- 

co = 03 + co 

will be generated in the medium, and this can in turn interact with the 

wave at angular frequency w2 to produce a non-linear polarization of 

the medium at angular frequency wi, by the three-wave interaction {9]. 

Consider for example wave propagation in the z direction. 
th 

Then for the i component of the non-linear polarization at freq- 

uency wi, equation (1.13) yields the summation: 

jK  

,: j ,< :, c-)3 ~-- 

(4.1) 

where explicit allowance has been made for amplitude variation with 

distance in a non-linear medium. 

Now since by (3.28) and (3.29): 

c¢~ _ . ~ c ~ 3  ( c o  - ~ " (4.2) 
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and introducing the experimental parameter from (3.40): 

~Ca3 = a 4 (4.3) 

we may simplify the notation further by contracting the summations over 

the indices jk by means of the effective parameter d (see Chapter 3 and 

Ref. [9}). "The advantage of this notation is that it reduces the 

problem to one dimension. All further derivations are made using this 

effective non-linearity, yielding in the end a simple, universally 

valid expression for the generated power. For given experimental con- 

ditions, the appropriate equation for d is substituted in this equa- 

tion, restoring again the full three-dimensional aspect of the prob- 

lem" [9}. It may be pointed out that at this stage in the text just 

cited, the approximation has already been made of neglecting all frequ- 

ency dependences of the non-linear susceptibility, i.e. in effect 

Kleinman symmetry has been assumed. 

With the above notational changes and simplifications, equation 

(4.1) and similar relations for P~, P~ yield for the non-linear pola- 

rizations at the three frequencies: 

~ = ~& ~ ( ~  ~ p c L ( ~ a _ ~  ~ _ ( ~  _ ~ t 3  ( 4 . 4 )  

These expressions may now be used in conjunction with the Maxwell 

equations to relate the spatial variations of the electric fields asso- 

ciated with the three frequencies. From equation (1.17) one has: 

, # 

where 

.~ = G_..-, E'" 4- Z.t.-t~ ] D''L- ( 4 . 8 )  

(with pNL now taken to be the effective macroscopic non-linear polari- 
N 

ration, as distinct from the value calculated from the local fields in 

the medium as in (3.11) and (3.12)). 

-~- O we have in the principal axis system of the Now since ~x = By = ' 
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crystal: 

~ c ~ I c_ ~ (4.9) 

using also equation (4.4). 

(4.9) yields: 

Direct calculation of the first term in 

= - (4.10) 

Now if the scale lengths L for significant changes of amplitude or 

phase of ~z with distance are such that: 

L >> . ~  

i.e. many wavelengths would be required for significant variation of 

the envelope function ~1(z), then the first term in parentheses in 

(4.10) may be neglected, and: 

(4.11) 

Henceforth we shall consistently adopt the slowly varyinq amplitude and 

phase approximation. From equations (4.4) - (4.6), (4.9) and (4.11) or 

their equivalents, we obtain directly {9]: 

¥ 

J~, _ 4 - ~ , ~ a  ~ ( ~ )  ~r[~c-~- <o -  ,~,)~] J a ~, c ~ 
(4.12) 

(4.13) 

( 4 . 1 4 )  

where explicit use has been made of the substitution k. e l = ei [°[/c2 

( i  = 1 , 2 , 3 ) .  ( A c t u a l l y ,  t h i s  s u b s t i t u t i o n  r e q u i r e s  a l i t t l e  t h o u g h t :  
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equation (4.9) in fact represents the propagation of both E and E 
ix ly 

in the z direction. From Chapter 2 we know that the corresponding 

phase velocities are in fact different, being given by~6 and ~.. , 

respectively. In our condensed notation, both of these modes are rep- 

resented by a single wave vector kl.) 

Each of the three coupled equations (4.12) - (4.14) gives the rate 

of change with distance of the amplitude at one frequency as a function 

of the amplitudes at the two other frequencies and of the phase differ- 

ence between the non-linear polarization wave and the electro-magnetic 

wave. We shall substitute {14]: 

(4 15) 

and first consider the simple case in which the amount of power genera- 

ted at the sum frequency (us) is small enough for the amplitudes at the 

two input frequencies (~i and ~e) to be considered constant. Then 

(4.12) - (4.15) reduce to the single equation: 

whence, 

dE B = Z~77Z ~2 ~ eX~( L~-~) (4 

integrating over a homogeneous slab of thickness L, 

16) 

In terms of the corresponding Poynting vectors 

(2.18)) : 

(by equation 

(4.17) 

(4.18) 

where x = Zhk L/2, Xs is the wavelength in vacuo corresponding to ws, Sl 

and S 2 are the Poynting vectors corresponding to the waves of angular 

frequency ~i and ~2, respectively, and the refractive indices ~i, ~2 

and ~a are those appropriate to the particular polarization states 
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under consideration (or the effective values appropriate to the compo- 

sitions of the beams ~z and ~e)- 

The form of equation (4.18) illustrates three important points 

[9]: 

i) For ~k ~ O, the output power generated by the three-wave inter- 

action varies as "--'(sln x) e. \ x /  

ii) For ~k = O, the output power is proportional to the square of the 

number of output wavelengths corresponding to the length of the 

crystal. 

iii) The output power is proportional to the product of the input 

powers. It should be borne in mind that (4.18) has been derived 

strictly within the small-siqnal approximation. 

(b) THE MANLEY-ROWE RELATIONS 

Equations (4.12)-(4.14), with ~ c k - ~' maY be written in the form: 

j ~ ,  c tc ~ dE E ~ K ~ (4.19) 

£" JE~ C 

~c E ~d~ ~ +~ 3 J~ = Z#77~ c~ ~ ~ e (4.21) 
3 3 ; 

which may be combined as: 

(4.22) 

or, from equation (2.18)- 

h~ t d ~  ca~ d~  ~ ca a d~ 
(4.23) 
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These are the celebrated Manley-Rowe relations, originally derived 

[25-27] for application to non-linear electrical circuit theory. 

Their original derivation is summarized and discussed in Appendix III. 

In the present form (4.23), the relations have been derived from the 

coupled amplitude equations (4.19) - (4.21) without specification of the 

particular interaction. They are therefore valid for sum-frequency 

and difference-frequency generation. Considering first sum-freqUency < 

generation, with laser input beams at wl and w2, one sees from equation 

(4.23) that both lasers will lose power, which is gained by the wave 

generated at the sum frequency w3 = ~i + ~2- For difference-frequency 

generation (ws- we = wl), one sees however that the source at ws loses 

power not only to the beam at the generated frequency wl, but also to 

the source of w2. Thus both waves at wl and w2 gain power if wl is 

generated from sources of Ws and w2. 

By division of (4.23) by ~ (the reduced Planck's constant), the 

above results may be restated in terms of the photon picture. In sum- 

frequency generation, a photon at ~l combines with a photon at w2 to 

give a photon at ws; in difference-frequency generation, a photon at 

ws is split into a photon at wl and a photon at we. It must be empha- 

sized, however, that these relations arise from conservation of energy 

and the non-linear response of the medium, and do not have special 

quantum-mechanical significance (see Appendix III). 

One example of an application of these relations is the parametric 

oscillator [28), in which a signal at the difference frequency wl bet- 

ween a strong source at ws (the pump) and a very weak source (e.g. 

noise in the system) is generated. This case corresponds to the i n- 

vertinq demodulator discussed in Appendix III. 

(c) SECOND HARMONIC GENERATION 

In the case where both input frequencies are equal, one has the 

interaction known as second harmonic generation, w2 = 2wl. Equations 

(4.4) - (4.6) are now replaced by the pair (note carefully [9] the fac- 

tor of 2 in (4.24)): 

I 

whence (4.9) and (4.11) yield (still in the slowly varyinq amplitude 
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d£.~, = 4_. n~%a d (4.26) 

and again one can substitute: 

~ = a ~, -- ~a (4.28) 

From equations (2.18), (4.26) and (4.27) one obtains for the Poynting 

vector corresponding to the second harmonic, for a homogeneous slab of 

thickness L, 

(4.29) 

where kl is the free-space wavelength corresponding to the fundamental 

frequency, and x = Ak L/2. This solution again applies only in the 

small-siqnal approximation. 

The coupled equations (4.26) and (4.27) can, however, be solved 

without recourse to the small-signal approximation {9,14}. With the 

simplifying assumptions of phase matching (~k = O), and thus equal 

phase velocities for the fundamental and second harmonic {14}, i.e. 

k 2 = 2ki, the solution is particularly simple. In that case, one ob- 

tains from (4.26) and (4.27) for the real field amplitudes: 

Jg - ,o=_  ~- ,~,~ d g,o E~o s,o(¢ - a~5,) (4.30) 
g ~ 4, c ~ 

d~ -{,c ~ 
7s - a ¢ , )  ( 4 . 3 1 )  

where we have substituted: 
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In addition, the imaginary parts of these equations yield for the spa- 

tial variation of the phases: 

c/ F [,~o 
-~, c~ £~o 

(4.32) 

Now making the substitutions: 

L s ,  = -< O- 

(4.33) 

one obtains the following: 

~t' - .,~ -~ ~ o  0 

d~ ( - -  ~ cos 0 

NOW from (4.34) and (4.35), it follows that: 

(4.34) 

(4.35) 

(4.36) 

+ ~ c o ~ s t ~ t  (4.37) 

where the constant will be unity if: 

We shall see below that (4.37) is also an immediate consequence of the 

Manley-Rowe relation for second harmonic generation. In addition, 

(4.34)- (4.36) imply (by inspection) that: 
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whence : 

d0 ~ ~S;n (9 ~ = a.~'u cos @ 4- xxacos ~ J---~ol~, (4.38) 

-~ ~ cos~) = co~s~-/~. (4.39) 

The initial conditions: 

t , o 

therefore constrain 0 to the values ~ w/2, whence one has from (4.33), 

(4.34) and (4.35) the solutions: 

which immediately satisfy 

a (4.40) 

(4.41) 

(4.37) as well. These relations describe 

the growth of second-harmonic amplitude with perfect phase matching in 

the crystal. 

For completeness, the Manley-Rowe relation is also obtained for 

second-harmonic generation. With Ak = O, equations (4.26) and (4.27) 

yield: 

/ ~  ~'J&, E ~ E" E~ (4.42) 

~ ~ = ~TT ~' c/ (4 .43)  

whence one obtains for the Poynting vectors: 

I A ~(aco ' ) - -  a. ~ S(a~ca~ ~) (4 .44)  
co J~ co~ d~ 

which is a special case (w2 = 2wl) of the Manley-Rowe relations (4.23). 

Now with k e = 2k I (or ~2 = bl), one has again u2+ v 2 = constant as in 

(4.37) . 
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(d) OUTPUT ANGLE 

The question of the angle over which a crystal of a particular 

size will radiat@ as a result of the non-linear term in the polariza- 

tion becomes particularly important in difference-frequency generation, 

where the output wavelength may be considerably larger than the input 

wavelengths [9,18]. Consider the phase-matche d interaction between 

two waves with angular frequencies ~2 and ~s > w2, generating a differ- 

ence frequency ~i = ~s- we. For simplicity, it will be assumed that 

the interaction takes place in a cylinder with radius a and axial 

length L, and that in this cylinder the two waves at ~2 and ~s are 

plane waves, parallel to each other, with uniform intensities out to 

the edge. As a result, the polarization wave at wz will also be a 

plane wave with uniform intensity out to the edge of the cylinder. 

A cylindrical coordinate system may be defined with the z axis 

parallel to the direction of propagation of the waves (i.e. along the 

axis of the cylinder). The field at an arbitrary point in space may 

now be determined by summation of the contributions to this field from 

each point within the interaction cylinder, for which the amplitude and 

phase of each contribution are required {29]. In terms of cylindrical 

coordinates, one can express the distance r between any source 

point (p,@,z) within the cylinder and any field point (po,0o,Zo) out- 

side. Letting the field point be a distance ro from the origin, we 

shall consider the simplified situation in which ro/r is sufficiently 

large for the field point to lie in the radiation zone [7,10,ii] of the 

cylinder. In that case, it is sufficiently accurate to approximate r 

by: 

~ Yo -- S cos "~ 

(4.45) 

where s is the distance of the source point from the origin, ~ the 

angle between the vectors ~ and ~o, @' = 8o - 0 and p = arc cos(Z°/ro). 

The radiation pattern in the generated field of frequency wl is deter- 

mined by the integral: 

which is performed over the volume: V = TF#L 

(4.46) 
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of the cylinder. On substituting from (4.45), and noting {30] that: 

o o 

p -<t  ? d_}t Je' Jy' 

= ~ q ~  J , ( ~ , ~ s ~ f ~  (4.47) 

in terms of the first-order Bessel function J1, one obtains the Fraun- 

hofer diffraction pattern [9,18]: 

& 

(4.40) 

The first term within parentheses on the right-hand side of (4.48) will 

be recognized as the term which determines the diffraction pattern of a 

circular aperture with radius a {7]. The second term within parenthe- 

ses is reminiscent of the (sinx/x)2 term in equation (4.18), but with 

ak replaced by k1(l -cos ~). This result shows therefore that the 

angular distribution of the output radiation is determined by the 

Fraunhofer diffraction pattern of an aperture with the same radius as 

the interaction cylinder, multiplied by a term that depends upon the 

phase mismatch due to the angular deviation p of the line joining the 

field point to the origin, from the axis of the cylinder. 

We see, therefore, that the output angle in far-infrared differ- 

ence-frequency generation can be much larger than the input angle. 

This fact allows the crystal to be placed inside the resonator of the 

laser which generates the input beams. The output beam can then be 

brought out of the resonator with only very small losses by a mirror 

which permits the input beams to pass through a hole in its centre 

{187. 

(e) PHASE MATCHING 

As one sees from equations (4.18) and (4.29), "the term (sinx/x)2 

is crucial to the success of any frequency-mixing experzment" " [9] , 
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since it effectively prevents the growth of significant amounts of 

power in the generated electromagnetic wave, unless the phase veloci- 

ties are matched (Ak = O) for the particular frequencies involved. 

Without phase matching, the generated signal will reach a maximum over 

a crystal length termed the coherence lenqth, Lco h {6]. For example, 

from equation (4.29) one has for second-harmonic generation: 

L = ~ X, (4.49) 

where ~l is the free-space wavelength at the fundamental frequency. 

It corresponds to the order of twenty wavelengths for typical crystals 

investigated with ruby-laser radiation. 

This effect, which is due to dispersion within the crystal (where- 

by a dephasing results between the second-harmonic and input fields), 

was first verified in an experiment by Maker et al. {31}, with crystal- 

line quartz. A parallel ruby-laser beam was projected through a thin 

(0.8 mm) plate of quartz, and the production of the second harmonic 

observed as a function of the angle between the plate normal and the 

laser beam. The rotation axis was normal to the beam, and parallel to 

the crystal z axis, which was also perpendicular to the direction of 

polarization of the input laser beam. "This experiment not only 

demonstrates the effect of dispersion in a dramatic way but also pro- 

vides the most useful method known today of obtaining quantitative mea- 

surements of the tensor elements describing the second-harmonic polari- 

zation. This is because the plane wave radiation problem from a flat 

plate can be accurately evaluated, whereas the situation with other 

geometries is exceedingly difficult and requires very precise informa- 

tion about the optical properties of the laser beam" [6~. In this 

experiment [31~, the distance between the successive maxima in the plot 

of output signal versus angular rotation corresponded to 14 ~, while 

the value of twice the coherence length calculated from refractive in- 

dex data was 13.9 ~. 

There are several different approaches to the problem of phase 

matching, which we briefly discuss next. 

i) Quasi-phase-matching methods 

A change in the phase difference between the generated second 

harmonic wave and the incoming electromagnetic wave by ~/2 per coher- 

ence length, would produce a quasi-phase-matched condition [9}. The 

term "quasi" is used in the present context because of the factor 
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(sinx/x)2 in equation (4.29), which ensures a reduction in output sig- 

nal strength of 4/x2 per coherence length; hence the output from this 

crystal would still be reduced below that from a phase-matched crystal 

with the same tensor d and length L. One suggestion for achieving 

this is to manufacture thin plates of the particular crystal, each one 

coherence length in thickness, and to reverse the direction of the 

crystal axis in alternate platelets so that the polarization wave would 

undergo a phase change of ~ in going from one plate to the next [14}. 

A major drawback of this method is the thickness of the plates (e.g. 

7 ~ for quartz) and the requirement that each successive one would have 

to be in optical contact. A more recent proposal is to grow semicon- 

ductor layers epitaxially onto one another [32~. 

A different method [14} that has been employed experimentally [33, 

34} is to utilize the phase change produced by total internal reflec- 

tion. Both the fundamental and second harmonic are reflected between 

the top and bottom surfaces of a slab of crystal, with the angle of 

reflection so chosen that the phase mismatch accumulated in every pass 

between the two reflecting sides is exactly cancelled by the differen- 

tial phase change between the fundamental and the second-harmonic ref- 

lections {9}. 

ii) Anqle phase-matchinq 

The solution to this problem for a uniaxial crystal was first 

given by Giordmaine [35}, and independently by Maker et al. [31]. 

Generalized for non-collinear beams, the condition for phase matching 

in second-harmonic production is: 

~ = ~, ÷ a'- ~ = o (4.5o) 

where the waves with wave numbers ~i and ~i' both have the same angular 

frequency (~i). In the collinear case, this would imply equal phase 

velocities v I and v a and thus equal refractive indices, since w2 = 2~l- 

In general this would not be possible, owing to the effect of disper- 

sion; in most materials, the dispersion is normal in the optical reg- 

ion and therefore the generated second harmonic radiation, with elect- 

ric field varying as exp i (k2z -2wlt) will lag behind the polarization 

wave which varies as exp 2i (klz - ~it), launched by the input beam. 

The phase veloci£ies v I and v e may, however, be equal for certain 

directions in an anisotropic crystal. We shall first consider the 

case of a neqative uniaxial crystal, such as KDP, with ordinary and 
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extraordinary refractive indices denoted (as in Chapter 2) by 

~o = C/vo, ~e = C/ve, respectively, where be < ~o- Now, provided that 

~zo ~ ~2e' where the subscripts zo and 2e refer to an ordinary wave of 

angular frequency ~i, and an extraordinary wave of angular frequency 

w2 = 2~i, respectively, phase matching may be achieved in this particu- 

lar crystal [6,9,31,35}. (This process is also termed index matchinq 

in the older literature.) When the above condition is fulfilled, one 

readily shows from equation (2.12) that surfaces mapped out by polar 

plots of ~io and ~2e(@) versus angle @ between the wave normal and the 

optic axis, intersect along the rim of a cone of half-angle: 

[e: "? (4.51) 

centred on the optic axis. From a single plane wave of wave number ~l 

completely in-phase harmonic radiation is produced in a uniaxial crys- 

tal only if the vector kl is inclined at an angle ~o to the optic axis. 

(Note from Chapter 2 that the ordinary fundamental wave may readily be 

prepared, since it must be polarized perpendicularly to the optic 

axis.) 

Analogously, in the case of a positive uniaxial crystal, such as 

cinnabar (HgS), phase matching cannot be achieved unless ~ze ~ ~2o" 

In this case, one finds from equation (2.12) that surfaces mapped out 

by polar plots of ~ze(@) and ~2o versus angle e between the wave normal 

and the optic axis, intersect along the rim of a cone of half-angle: 

.k 

- 

(4.52) 

An example of a positive uniaxial crystal which does not satisfy the 

above condition for phase matching (i.e. is not sufficiently birefrin- 

gent) is quartz {6}. 

We now consider the more general situation of second harmonic pro- 

duction in which the two input waves are non-collinear {35~. When 

equation (4.50) is satisfied, the entire irradiated crystal volume can 

radiate coherently, electromagnetic momentum is conserved and optimum 

radiation efficiency is achieved. In the particular case in a nega- 

tive uniaxial crystal of an ordinary wave (~i) propagating at an angle 

~z with the optic axis, and mixing with a second ordinary wave (~z') to 

form the extraordinary second harmonic wave (52) emitted at an angle Q 
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to k I, we see that equation (4.50) is satisfied if: 

where e is the angle between k 2 and the optic axis. 

(2.12), we see that (4.53) is a transcendental equation; 

are, however, simple provided that: 

(4.53) 

Referring to 

its solutions 

is a small angle; 

for which ~2e(~) = ~io" 

mated by: 

? 

i.e. provided that k I lies close to the direction 

In that case, equation (4.53) can be approxi- 

= , ~ ( ~ -  

and from (2.12) with the assumption that both ~ and A~ are much smaller 

than ~o and ~, one obtains {35]: 

0 ~ = ~ ( ~ h u  - 0 ~ o ~ )  (4 .54)  

where the constant: 

K = a .  y - , o - y , ~ ,  ~o- - /  

and ~ is the included angle between vectors parallel to ~l × (~e ×~i) 

and ~I × (~ ×~i), originating at the same point on a line through the 

origin parallel to kl- 

The solution to the quadratic equation (4.54) represents a circu- 

4__~]½ centred about lar cone of wave vectors ~2 of half-angle ½ K (i + K " 

the direction in the ~i~ plane making an angle %1 + ½ K with the optic 

axis. One easily shows that no completely in-phase second harmonic 

generation is possible unless %1 ~ %0 - I/4K- As %1 increases from 

this value, emission can occur on a cone of increasing radius which 

crosses the direction of the incident wave ~z when %1 = %0 {35]. 

For example, for a ruby laser (X r = 6943 ~) incident on a KDP 

crystal, appropriate values for the corresponding refractive indices 

are: ~lo = 1.506, bl e = 1.466, ~2o = 1.534 and ~ae = 1.487. For 

these, one obtains from equations (4.51) and (4.55):. 
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~ o  = 4-I-'~ °~ k = o.o¢1 

Experimental values obtained by Giordmaine [35~ for these quantities 

from the features of the second harmonic emission were in good agree- 

ment with the above values; qualitative and quantitative agreement was 

obtained with the general behaviour of the emission as discussed above. 

The type of phase matching discussed up to this point in which 

both of the fundamental waves have the same polarization, is termed 

type I phase matching; if the fundamental waves are orthogonally pola- 

rized, the phase matching is termed type II [9~. The solution to the 

problem of phase matching in second-harmonic generation for type II 

processes in uniaxial crystals, is reviewed by Hobden [36], who shows 

that the phase match angle (~o) is always greater for type II than for 

type I processes, and therefore that if the type II process is possible 

in a particular crystal, then so is the corresponding type I process. 

The more general problem of phase matching in a biaxial crystal is 

considerably more complicated than for a uniaxial crystal, and simple 

solutions in closed form are not in general obtained. For further 

details on this subject, Ref. [36) may be consulted. 

One of the major problems associated with angle phase matching is 

the fact that for the extraordinary wave, the ray direction and the 

wave-normal direction are Parallel only when e = 0 or 90 ° (see Chapter 

2). Thus in a phase-matched interaction at an intermediate angle e, 

the extraordinary beam (i.e. direction of energy propagation) cannot 

overlap an ordinary beam in the entire interaction length [9}. Thus 

the fundamental and second-harmonic beams physically separate from each 

other, since they are necessarily in orthogonal states of polarization, 

a phenomenon termed "walk-off" in the technical literature [9,36]. 

The angle (~) between the directions of S and n in equation (2.18) is 

referred to as the "walk-off" angle. "For a type I interaction this 

effect, although present, is not too serious. It only means that the 

generated beam does not totally overlap the polarization wave, and thus 

the integration in equation (4.18) becomes more complicated. The 

exact form of integration has to be worked out for each specific case. 

In general, we find that the output is proportional not to the square, 

but rather to a lower power of the length. For a type II interaction 

the effect is more serious, because here the two fundamental beams do 

not overlap completely, and thus after a certain crystal length the 

polarization wave vanishes completely and mixing no longer occurs" 

[9]. An expression for the "walk-off" angle has been derived in Chap- 

ter 2 (equation (2.31)). 



259 

Another limiting factor in angle phase matching is due to the 

divergence of a focussed beam [9]. For second-harmonic generation in 

a negative uniaxial crystal and a type I interaction, equation (4.50) 

yields for collinear beams: 

where e = ~o (equation (4.51)) for Ak = O. 
m 

from this angle, equations (2.12) and 

(4.56) 

For a small deviation A0 

(4.56) yield [36]: 

= /,o -- Si~ a 0 ~Q (4.57) 

For second-harmonic generation in a positive uniaxial crystal and a 

type I interaction, equation (4.50) yields for collinear beams: 

/ 

where ~m = ~o (equation (4.52)) for Ak = 0. For a small deviation A0 

from this angle, equations (2.12) and (4.56) yield [36]: 

c I 0  e . 7  ' 

(4.59) 

In the case of type II processes, the mismatch Ak is reduced by a fac- 

tor of 2 [36). For crystals with small birefringence and dispersion, 

equations (4.57) and (4.59) reduce to: 

P (4.60) 

where ~ has the same sign as the crystal birefringence and has modulus 

1 for type I and modulus ½ for type II processes, respectively. 

These relations show that the variation of Ak is linear with AS, a fact 

which causes practical difficulties for phase matching at intermediate 

angles ~m" "The output is proportional to the energy density at the 

fundamental frequency, and so, to achieve the maximum energy density, 

the beam is focussed on the crystal. However, the linear variation of 

Ak with Ae means that, for a given convergence of the beam, efficient 

phase matching will be obtained over a restricted crystal length only" 

[9]. 
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If it is possible to adjust the refractive indices so that e m = 

90 °, by variation of the temperature [9] (temperature-dependent phase 

matchinq) or chemical composition of the crystal, then the linear 

change in Ak with A@ is replaced by a quadratic dependence [36], since 

in equations (4.57), (4.59) and (4.60) now: 

s ~  ~ Q  a e  ~ ~ ( m o )  ~ 

Thus for @m = 90°' the allowable beam divergence is much larger, and in 

addition the "walk-off" effect due to double refraction disappears, 

according to equation (2.31). For these reasons, phase matching at an 

angle e m = 90 ° to the optic axis is termed non-critical phase matchinq 

(NCPM) [36]. By contrast, phase matching at 0 < e m < 90 ° is termed 

critical phase matchinq (CPM) [36]. As a numerical example of CPM, 

consider the case of a KDP crystal irradiated with the beam of a ruby 

laser, as in the experiment of Giordmaine [35]. For the given values 

of the refractive indices in this paper, one obtains a value of 

e m = ~o = 49.9 °. For a coherence length of 1 cm, equations (4.49) and 

(4.57) yield a value for the allowable beam divergence from the phase 

matched direction of: 

On the other hand with NCPM, values of Ae some 30 times larger could be 

obtained [36]. 

The topic of angle phase matching is resumed in the following 

chapter, with reference to the three-wave interaction. 

iii) Other phase matchinq methods 

A different technique whereby phase matching may be achieved in a 

non-linear medium, is to employ optical rotatory dispersion, the opti- 

cal rotation arising either from natural optical activity [37,38] or 

from magneto-optic rotation as in the Faraday effect [39]. In addi- 

tion, optical waveguides have been employed to reduce the degree of 

mismatch [40], and phase matching has been induced acoustically [41]. 

For details on these techniques, references [37-41] should be consul- 

ted. 
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CHAPTER 5 

PRACTICAL APPLICATIONS 

In this chapter we consider various fields of application of the 

preceding theory, as well as limitations imposed by practical consider- 

ations. 

(a) SECOND HARMONIC GENERATION 

This important application is reviewed in detail in Ref. {9], 

where the reader will also find numerical results for cases of practi- 

cal interest. An important modification of our earlier equation 

(4.29) is to allow for the finite cross-section (A) of the incoming 

laser beam. With W(2w) and W(w) denoting the total second-harmonic 

and input powers respectively, this equation may be re-written as: 

W ~ )  = 5 , ~  L ~ ~ c ~  

/ 

(5.1) 

provided that the condition of phase matching has been satisfied (i.e. 

~(2w) = ~(w)). (As before, Xl denotes the wavelength in vacuo of the 

fundamental.) An efficiency ~SH for the generation of second-harmonic 

power may now be defined by the ratio of W(2w) to W(w): 

(5.2) 

It should be recalled from the previous chapter that this result is 

strictly applicable only within the small-signal approximation. A 

more general result [14] follows from equations (4.33) and (4.41): 

(5.3) 
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where: 

L ~N 
(5.4) 

Noting the phase match condition, equations (5.3) and (5.4) immediately 

reduce to (5.2) in situations where the fractional power lost to the 

second harmonic by the fundamental is very small. 

Now equation (5.2) suggests that the efficiency of the process of 

second harmonic generation may be improved by: 

i) reduction of the beam cross-section (A) ; 

ii) increasing the interaction length (L); 

iii) judicious choice of effective susceptibility (d), i.e. crystal 

type; 

iv) increasing the input power in the fundamental (W(~)). 

Above, A has been assumed constant throughout the interaction 

region in the crystal. As A is reduced, diffraction effects (equa- 

tion (4.48)) and hence beam divergence will become more important, with 

a consequent reduction in efficiency below that predicted by equation 

(5.2). Moreover, since the second-harmonic and fundamental beams are 

of opposite polarization, the effect of "walk-off" will tend to limit 

the effective interaction length (see Chapter 4). However, as long as 

the effects of beam divergence and "walk-off" do not predominate, 

improved focussing of the laser beam will necessarily improve the ef- 

ficiency [9]. This suggests a need to investigate the optimum degree 

of focussing {42,43]. 

In this study [42,43], the input laser beam is considered to be 

Gaussian, while the second harmonic wave is ensured to be Gaussian in 

character by use of an optical resonator ~44,45]. Gaussian beams are 

specified by the following parameters: direction of the beam axis, 

location of the focus, the confocal parameter, the frequency and the 

power, the first three of these being treated as optimizable para- 

meters. In the confocal resonator [44], identical spherical reflec- 

tors of radius b are employed, separated by a distance equal to b. 

With crystal length denoted by L, a focussinq parameter is defined by: 

= u/~ (5.5) 
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and double refraction enters in the theory through the parameter: 

3 = °< ( L  ~ ) 7  ~ (5.6) 

where a denotes the double refraction ("walk-off") anqle, which for an 

ordinary input beam subject to the phase matching condition, follows 

from equation (2.31) as: 

(This expression is in agreement with the formula of Boyd et al. [46), 

where the symbol p is used as in Refs. {42,43} to denote the double 

refraction angle.) For the case B = O, Boyd and Kleinman [43} show 

that the optimum focussinq parameter: 

Values for the optimum focussing parameter as a function of B may be 

obtained from figure 4 of Ref. [43}. Another characteristic length of 

importance in this study, called the aperture length L a [46}, corres- 

ponds to the critical distance for which second-harmonic generation no 

longer increases with the square of the crystal length, owing to the 

"walk-off" effect. (The name originates from the earlier appellation 

of "walk-off" as the aperture effect [47}). From Ref. [46} one has 

the expression: 

L = ] -~  w__~ (5.8) 

where w o denotes the optimum spot size of a Gaussian beam, the spot 

size being defined [42} as the distance from the beam axis at which the 

amplitude of the field falls to I/e of its axial value. It is simply 

given by [46}: 

~4 o = (b/~ ~. (5.9) 

For crystals of length L > L a, the dependence of second-harmonic gene- 

ration power on length changes from quadratic to linear [46}. 

A fourth characteristic length is the effective lenqth of the 

~ocus [42}: 
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L T = w ~/~ (5.i0) 

In summary, the study of optimization introduces four characteristic 

lengths (L, w o, L a and Lf), the last three of which may be expressed in 

terms of L, B and ~ by {43]: 

.u --.I- 

L= T 

L;= £__L 

( 5 . i i )  

On defining the following grouping of factors in equation (5.2) by 

[43} :  

K = stl 774~/~ (5.i2) 

the original expression for the efficiency may now be re-written in the 

ideal case as: 

r~sN b./i 
o 

(5.13) 

The study of Boyd and Kleinman {43} shows that owing to the effects of 

"walk-off", beam divergence and diffraction, this idealized formula is 

only valid subject to the conditions: 

L L#>> L 

Four other asymptotic representations may be obtained: 

(5,14) 
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(5.15) 

(5.16) 

(5.17) 

It should be pointed out, however, that all five expressions (5.13) - 

(5.17) for ~SH assume that the point of focus of the Gaussian beam 

occurs mid-way between the entrance and exit faces of the crystal, and 

that the absorption coefficients are zero for both the fundamental and 

the second harmonic. 

With regard to the third and fourth points stated above for im- 

proving ~SH' the list of suitable materials in Ref. {9} may be consul- 

ted. An upper limit to the input power for a crystal of a particular 

effective susceptibility is imposed by the onset of radiation damage. 

As a rough empirical rule, the threshold field-strength at which this 

occurs is such that the maximum allowed value of the factor daW(w)/A in 

equation (5.2) is approximately constant from one medium to the next. 

(b) PARAMETRIC UP-CONVERSION 

The process of second-harmonic generation is in fact a special 

case of the situation in which electromagnetic waves at two different 

frequencies (wz, wa) interact to generate a wave at the sum frequency 

ws = wl + we. The coupled equations which describe this process have 

already been derived ((4.12)-(4.14)). In the present case, it is 

assumed that the input power at the frequency w2 is much larger than 

the power at wz, and that the electromagnetic field at ws is absent in 

the absence of the driving fields at wz and we {9}. With the subsi- 

diary condition: 

di-Ea- = o ( S . l S )  d~ 

in the coupled equations (4.12)-(4.14), together with the phase match- 

ing condition: 

aK = -~, + ~-- ~ = o, (5.19) 
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one has for the real field amplitudes: 

,jS,o = .~_-rr~t4 E,.o,~ o~,,~(¢ ' -  ¢'3") 
t 

(5.20) 

(5.21) 

where we have substituted: 

~, = ~,o c~) ~ r  ~ ~c~-~ ~ ~ = ~oC~ -) ~ x r ~ % ~ .  

In addition, the imaginary parts of these equations yield for the spa- 

tial variation of the phases: 

Now making the substitutions: 

L = ~ ~'  ~'~ ~ o  

= 

~, = 

~ ~,J 

(5.23) 

one obtains the following: 
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Cl'u- __ o<. ql Sin Jf (5.24) 

(5.25) 

#9 .~. ~ c o s  @ (5.26) 

Thus from (5.24) and (5.25), it follows that: 

(5.27) 

where the constant will be unity subject to the initial conditions: 

<,(#=o)= I , ~(#= o)= 0 (5.28) 

In addition, (5.24)-(5.26) imply (by inspection) that: 

c]~ - -  "U'C05 ~ 4- .',xCOS 0 c~-- (5.29) 

whence: 

C ~ ~ ~ c o s  @ 

The initial conditions (5.28) 

whence one has from equations (5.24), 

= ¢ o n ~ n ~ .  (5.30) 

therefore constrain 0 to the values ~ ~, 

(5.25) and (5.27) the result [9}: 

E o(~ ) - - - - -  E o(o" ) cos(~/L } (5.31) 

~ ,31 a 
E o ~  ) = (5.32) 

Thus we see that the flux at the frequency ~z is totally transferred to 

the sum,frequency beam after a characteristic length XLuc/2, where Luc 

may be re-written from (5.23) as: 
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(5.33) 

It is interesting to compare this expression with that for LSH (equa- 

tion (5.4)); in spite of apparent similarities, the interpretation of 

the two lengths is completely different, in view of the dissimilar na- 

ture of the pairs of relations (4.40), (4.41) and (5.31), (5.32). 

By a suitable choice of crystal length, one therefore has the 

means of achieving an efficient conversion of low-frequency (e.g. 

infrared) into higher frequency (visible) radiation. Such conversion 

has two major advantages: firstly, low-noise detectors of visible rad- 

iation are far more efficient than those operating in the infrared; 

secondly, the detection process can be carried out at room temperature 

after up-conversion, whereas direct measurement in the infrared would 

require detector cooling to between 4 and 77°K [9]. 

From (5.31) and (5.32) one has for the Poynting vectors: 

~(L) = A, S(~=o) s,~a(L/L.~ ") 
,A a ' 

(5.34) 

which becomes, in the limit L << L 
uc 

SJL') = ~,~ 77~a~L ~ S,(~=o')S~(~:o) (5.35) 

in agreement with the small-signal result (4.18), subject to the phase 

match condition being met. 

With reference to practical applications, one may introduce the 

subscripts s ("sum"), p ("pump") and ir ("infrared") in place of 3, 2 

and i, respectively {9}. For a beam cross-section A, the conversion 

efficiency quc may now be defined by the ratio of the photon fluxes 

corresponding to Ss(L) and Sir(O), which follows from (5.35): 

5qa T'r s~r/~ L ~ -~p(£:o) (5.36) 

A further application of up-conversion is parametric image conver- 
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sion [93, in which image information is transferred from the infrared 

input to the sum frequency output. 

(c) PARAMETRIC DOWN-CONVERSION 

This process, which is not of the same technological importance as 

parametric up-conversion, is a particular case of the inverse of sum- 

frequency generation (ws = wl + w2), in which a signal (w1) is generated 

by interaction of a wave of higher frequency (ws) with a laser beam of 

frequency w2- It is assumed in this case that the input power at the 

frequency w2 is much larger than the power at ws. We have already 

seen from the previous chapter that the Manley-Rowe relations for this 

case imply that the wave of frequency ws loses power not only to the 

beam at the generated frequency w1, but also to the source of we (the 

laser beam). 

It is interesting to note from the nature of the solutions (5.31) 

and (5.32) to the problem of parametric up-conversion, that down-con- 

version will be a necessary by-product of the latter process after de- 

pletion of the available field energy at wm has occurred. 

For further details on this process the reader is referred to the 

book by Bloembergen [24). 

(d) OPTICAL PARAMETRIC AMPLIFICATION 

This is a particular case of difference-frequency generation 

(ws - w2 = w1), in which a weak signal (w2) is made to interact with a 

strong, higher-frequency pump (ws), and both the generated difference 

frequency (w1) and the original signal are amplified. The signal at 

the generated frequency difference is known as the idler, and this 

process corresponds to the invertinq modulator discussed in Appendix 

III. 

With the subsidiary condition: 

Jg~ _ 
j~ -- 0 (5.37) 

in the coupled equations (4.12)-(4.14), together with the phase match- 

ing condition (5.19), one obtains for the real field amplitudes: 

c/~= ~ ,  c ~ ~o 
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where we have substituted: 

(5.39) 

In addition, the imaginary parts of these equations yield for the spa- 

tial variation of the phases: 

c ~ L  4, £o 4 £~o J 
cos(¢,+~"). (5.40) 

On substituting as follows: 

p~ 

--I 

(5.41) 

one obtains the relations: 

From (5.42) and (5 

Jf  
J % , "  - -  

.43) it immediately follows that: 

(5.42) 

(5.43) 

(5.44). 

4 x  - -  ~ %r  ~ C o n s ~  (5.45) 



where the constant will be equal to: 

subject to the initial condition: 

In addition, 
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whence: 

. ~ ( f  = o) = o (5.46) 

(5.42)-(5.44) imply (by inspection) that: 

d f  v c o s O  2~ + ~ c o s ~ d : f  (5.47) 

~ . u . ~  c o s  0 = c o ~ s t ~ n T .  ( 5 . 4 8 )  

therefore constrains e to the value + -~ 
-- 2 ' 

(5.43) and (5.45) the results {9, 

The initial condition (5.46) 

whence one has from equations (5.42), 

48}: 

(5.49) 

(5.50) 
y, 

For the usual situation L/Lpa << i, the amplification of the sig- 

nal (E 2) therefore depends upon L as: 

ell 1 ~ \ Lp~ 

The disadvantage of the parametric amplifier in comparison with the 

parametric oscillator discussed below is this rather low gain {9]. 

An important application of this principle is in the field of 

real-time holography [49]. 

(e) OPTICAL PARAMETRIC OSCILLATION 

With the addition of feedback (by means of a resonator), the weak 

signal at w2 may be built up by repeated passage through the non-linear 

crystal. As a result of this process, the weak signal at ~i can also 
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be built up if the resonator is effective at this frequency as well. 

In that case, the terms "signal" and "idler" could apply to either of 

the two lower frequencies [9}. The pump may be assumed to make a 

single pass, without depletion {48]. 

The solutions derived in the previous section are now inapplica- 

ble, because of the different boundary conditions, and instead assume 

the form [9,48]: 

I0  E.JA -~ i / / 

(5.51) 

(L/Lp~.). (5.52) 

The condition for oscillation is that the gain per pass should 

exceed the losses. With a high Q resonator used to provide the proper 

feedback by means of mirrors, the reflectivity of these mirrors becomes 

an important consideration, in addition to diffraction effects and bulk 

crystal losses, in determining the performance of the oscillator [48]. 

The first successful demonstration of this effect was by 

Giordmaine and Miller [28], who employed a Q-switched CaWO4:Nd s+ giant 

pulse laser producing 10580 ~ radiation. By means of a lithium nio- 

bate crystal, the pump frequency was doubled (~D = 2~o) and then passed 

through an infrared absorbing filter into a second lithium niobate cry- 

stal, this one coated with dielectric films on the entrance and exit 

surfaces, designed for peak reflectivity at the original wavelength 

(10580 ~). The pump wave was removed after emerging from the second 

crystal by passage through a silicon filter, leaving only the signal 

and the idler (where ~s ~ ~i ~ 104 ~' from the phase match condition). 

Whereas in this experiment the threshold power for oscillation was 

so high that only a pulsed pump source could be used to produce para- 

metric oscillation, it has subsequently been demonstrated {50} that 

continuous parametric oscillation is feasible by suitable choice of 

non-linear material, such as barium sodium niobate (Ba2NaNbsozs). 

This crystal, which has interesting optical and ferroelectric proper- 

ties, has a filled tungsten bronze (orthorhombic) structure, and be- 

longs to the Cev class; its non-linear coefficients are three times those 

of LiNb03and LifO s {51~. Good crystals are, however, difficult to grow. 

The major problem associated with the optical parametric oscilla- 

tor is the requirement of double resonance for both signal and idler 

frequencies, together with the constraints of phase matching and a pre- 

scribed sum frequency wp = ~s + ~i" In general, the cavity will be 
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resonant at frequencies Wso and Wio such that Wp = Wso+ wi0+ ~w, while 

for the actual signal and idler frequencies, the Q-factor will be lower 

(i.e. higher losses and thus higher oscillation threshold). Since the 

decrease in Q owing to a phase mismatch at Aw = 0 is much less than the 

decrease owing to a finite ~w under phase matched conditions, the ac- 

tual operating point of the oscillator may be quite far removed from 

the operating point determined with the assumption of phase matching 

[9]. Slight variations in operating conditions then lead to sudden 

shifts in output, a phenomenon known as mode hoppinq or the cluster 

effect [9}. 

(f) PHASE MATCHING IN THE THREE-WAVE INTERACTION 

Whereas phase matching is discussed in Chapter 4 with specific 

reference to second harmonic generation, we conclude this chapter by 

pointing out the required generalization to the three-wave interaction. 

Subject to the conditions: 

= ~ 4- ~ (5.53) 
3 ~ 

~- ~- ~a (5.54) 

applicable to collinear beams, the following alternatives arise in uni- 

axial crystals [9,52]: 

/M~3o 6~3 

___//~ o~0 4- ~ao~O (type Ia) (5.55) 

= /~/ee)~O l ~L ~(0)CO (type Ib)(5.56) 
~/~e 

~- 4- /~ (Oko (type IIa) (5.57) //~lo c°l /~e a 

= ~ , o  cJ ~ M..(~)cO { /~¢ a (type lib) (5.58) 

It has already been shown that for second-harmonic generation, type Ia 

is appropriate to ne@ative uniaxial crystals, whereas type Ib is 

appropriate to positive uniaxial crystals (noting again that owing to 

insufficient birefringence [6] or the particular symmetry of the crys- 

tal [9], phase matching may not be possible in particular cases). 

Now for the present equations ((5.55)-(5.58)), curves may be drawn 

of w3 versus the pair of variables wl, we for various phase matching 

angles e m to the optic axis. Some examples are shown in Ref. i52]. 
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In the case of AgGaS2, which is a crystal of chalcopyrite (tetragonal) 

structure (class D2d), solutions are found to the phase matching prob- 

lem for both type I and type II processes investigated. In the case 

of type Ia phase matching, the plot is found to have two branches, for 

e m = 90 ° , one in the high-frequency (band-gap) dispersive region, and 

one in the low-frequency (reststrahlen [9~) dispersive region. For 

the hi,gh-frequency branch, second-harmonic generation occurs at 

Xa ~ 8930 ~, while for the low-frequency branch, it occurs at 

X3 ~ 56000 ~. Between these two wavelength values, the birefringence 

is too large to allow phase-matched second-harmonic generation for 

e m = 90 ° . However, as e m is decreased, the birefringence is reduced 

and the extrema of the two branches (corresponding to ~i = w2) move 

closer together on the ~s axis, the two type Ia solutions coalescing to 

a single closed curve which shrinks to a single point as e m approaches 

30 ° . For ~m < 30o' no type I solution of any kind is possible for 

this crystal. 

In the case of type IIa phase matching in AgGaS2, two branches are 

again obtained and second-harmonic generation corresponds to the inter- 

section of the two curves, no solution being possible for e m < 45 ° . 

For two other semiconductor crystals (CuGaS 2 and CuInS2) investi- 

gated by these authors [52~, no phase matched solutions are obtained. 

While the above comments apply to collinear phase matching, it is 

clear that for wavelengths such that: 

I a 3 

phase matching can only be achieved by employing non-collinear beams. 

An example of this situation, which arises in parametric amplification 

in KDP, is described in Ref. [53]. 

For further details on the subject of collinear phase matching in 

the three-wave interaction, the reader is referred to Appendix IV. 
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CHAPTER 6 

ADDITIONAL NON-LINEAR OPTICAL EFFECTS 

(a) RESONANCE EFFECTS 

A basic requirement of the power-series expansion approach (equa- 

tion (i.13)) from which the above description of non-linear optics has 

been developed, namely convergence {54], may be expressed in the fol- 

lowing way, in the notation of equation (3.14): 

j ~ ~ 

T h i s  e x p r e s s i o n  f o r  s e m i - c l a s s i c a l  mode j may be r e - e x p r e s s e d  quan tum-  

mechanically {6,24,54} in terms of the electric dipole moment ~ng con- 

necting the states In> and Ig>, separated in energy by ~Wng. The fac- 

tor Fj/M~ is now interpreted [24] as the damping constant of the off- 

diagonal element of the density matrix Png corresponding to the homo- 

geneous width of this one-photon transition. The interpretation [54] 

is then that the Rabi frequency, given by the left-hand side of inequa- 

lity (6.1), should be small compared with the de-tuning, i.e. for non- 

resonant parametric processes. The perturbation approach will remain 

valid even on resonance provided that the Rabi frequency is small com- 

pared with the homogeneous line-width. 

This inequality is violated in the coherent interaction between 

radiation and atomic systems known as self-induced transparency {55- 

58]. In this non-linear process, a short pulse of coherent light with 

energy above a certain critical value for the particular pulse width 

{57] passes through an optically resonant medium as though it were 

transparent, whereas pulses of energy below the critical threshold are 

absorbed. Although the width, energy and shape of the transmitted 

pulses are preserved (after some initial re-shaping), their speed is 

far below the ordinary phase velocity of light in the medium. A com- 

plete discussion of this process and related phenomena will be found in 

Refs. [55-58] and further references cited by Shen {55]. 
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(b) CALCULATION OF NON-LINEAR SUSCEPTIBILITIES 

The non-linearities of interest may be divided into two categor- 

ies, viz. fast and slow, according to the relevant time-scales invol- 

ved. In the former case, the non-linearities are associated with elec- 

tronic motion, and the relevant frequency responses greatly exceed op- 

tical frequencies; in the latter case, motions of the nuclei need to 

be considered, relaxation times are finite and absorption of electro- 

magnetic wave energy by the medium takes place to some extent. Slow 

non-linearities are usually associated with infrared frequencies. 

Models for the calculation of ~(n) are discussed by Shen {55}. 

Of particular interest is the bond model for molecular polarizabilities 

~// and ~I (components of ~ parallel and perpendicular to a cylindric~ly 

symmetrical bond). According to the bond additivity rule for crystals 

the induced polarization in a molecule (or crystal) is the vector sum 

of the induced polarizations of all bonds between the atoms. Extending 

this rule to the non-linear polarizabilities, we may write: 

where 8i (n) is the nth-order polarizability tensor of the ith bond, and 

the summation is over all bonds in a unit volume. The ~(n) are in turn 

related to the polarizability ~ and electric field ~ by the derivative: 

(6.3) 

In component form, for example: 

Further details are developed in Chapter 7, section (f). 

(c) LIQUID CRYSTALS 

Of recent interest as well is the subject of non-linearities in 

liquid crystalline materials {55,59}. These materials are composed of 

long molecules with strong anisotropy, whose shapes and intermolecular 

forces tend to produce parallel alignment against thermal agitation. 

This results in the appearance of mesomorphic phases {60,61}, between 

the phases of liquid and solid. In these new phases, the molecules 

are approximately aligned with possible long-range structural order, 

but may still retain certain degrees of translational and rotational 
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freedom. Of the mesomorphic phases, the nematic phase {60,61~ has the 

least molecular ordering, as the molecules are aligned in one direction 

but are free to translate and rotate about their long axes. In both 

the liquid and nematic phases the material has inversion symmetry and 

in consequence a vanishing second-order susceptibility. 

On the other hand, the third-order susceptibility in the nematic 

phase is quite large. Because of the strong molecular anisotropy, 

even an optical field can induce appreciable molecular alignment, the 

induced alignment (and hence induced birefrinqence) being proportional 

to the square of the impressed optical electric field [55}. In the 

liquid phase, this effect is known as the optical (quadratic) Kerr 

effect [4~, and is a special case of the processes listed in section 

(c) of Chapter 3. By analogy with paramagnetic-ferromagnetic phase 

transitions (the light intensity playing the role of the magnetic 

field, and the induced birefringence taking the place of the induced 

magnetiza£ion), a Curie Law may be formulated for the liquid-nematic 

phase transition [62}: 

c I~1  ~ (6 .s)  A L l  
--F T- 7- ~ 

(C is a constant). This expression for the induced birefringence (L~) 

at temperatures T > T* (the second-order transition temperature) app- 

lies well except in the vicinity of the critical divergence, which is 

better described by first-order theory {55~. 

The induced alignment also exhibits a critical slowinq-down beha- 

viour [55), i.e. the relaxation (response) time ~ of L~ also diverges 

as T approaches T*, this behaviour being analogous to the critical 

slowing-down of spin alignment in a paramagnetic system. The relaxa- 

tion time ~ may in turn be described by [55,62}: 

= CI ~ (6.6) 

T- T ~ 

where C' is a constant, and W a viscosity coefficient. In the vicini- 

ty of T*, ~ for liquid crystalline materials is typically several hun- 

dred nanoseconds, considerably longer than for ordinary liquids. In 

the case of CS2, for example, T is only 2 picoseconds. The large val- 

ues of ~ and T make liquid crystals suitable materi~is for the study 

of self-focussinq~ stimulated Raman and Brillouin scatterinq (see be- 

low). 

Third-harmonic @eneration in cholesteric liquid crystals {60,61~ 

has also been a subject of recent study {55,59,63]. "A cholesteric 

liquid crystal can be considered as a nematic liquid crystal twisted 
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around an axis perpendicular to the direction of molecular alignment. 

The molecules form layers; in each layer the molecules are aligned 

parallel to the layer, but as the layer advances, the direction of ali- 

gnment gradually rotates. As a result, the material has an overall 

helical structure, and hence a one-dimensional periodic structure with 

the period equal to one-half of the helical pitch p. The pitc h of a 

cholesteric liquid crystal can easily be varied from about 0.2 ~ to 

several hundred microns by almost any external perturbation, such as 

temperature" {55]. 

As a result of this one-dimensional periodic structure, optical 

Bragg reflection can take place in such a medium. Furthermore, in 

order to achieve phase matching in wave mixing processes, momentum need 

be conserved modulo ~ ~ in the case of propagation along the hel- only 

ical axis [54,55,63]. In the case of third-harmonic generation, we 

require for maximum efficiency [63]: 

P 
where the + and - signs indicate forward and backward propagation, res- 

pectively, and m is an integer. While phase-matching is achieved, the 

balance of momentum (4~a~/p) is transferred to the periodic structure 

[32]. From the dispersion of the refractive index of the medium, the 

helical pitch required for phase matching can be calculated from equa- 

tion (6.7), and hence the appropriate sample temperature chosen [63, 

64]. Various phase-matching cases with fundamental beams propagating 

in the same or opposite directions, or with fundamental and third-har- 

monic beams in opposite directions, have been studied experimentally by 

Shelton and Shen {63-65]. By analogy with "Umklapp" processes of ele- 

ctrons and phonons in crystals, the term "cpherent optical umklapp pro- 

cesses" has been introduced by these authors. 

(d) OPTICAL PHASE CONJUGATION 

The related processes of optical phase conjugation, phase-conju- 

gate reflection, degenerate four-wave mixing and real-time holography 

may be studied in terms of the principle that for any electromagnetic 

wave that propagates through an inhomogeneous, non-absorbing medium, a 

time-reversed replica of this wave may be generated by non-linear 

effects which can be used to correct the distortion of the initial wave 

fronts by the inhomogeneous medium {54,66,67]. Consider an experimen- 

tal arrangement in which a strong pump beam: 
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is reflected by a mirror in such a way as to set up a strong standing- 

wave pattern in a non-linear medium, by interference of beam k, with 

the reflected beam (k 3 = -kl) : 

A weak signal beam: 

where ~2 is in some arbitrary direction relative to ~i is also incident, 

giving rise parametrically to a reflected wave with wave vectork~ = "~2" 

as a result of non-linear polarization terms of the type {68}: 

-- ~at] 

The phase of this reflected wave k 4 is therefore given by: 

+ = + + 

i . e .  i s  e q u a l  and o p p o s i t e  t o  t h e  phase  o f  wave k 2 , a p a r t  f r o m  an a r b i -  

t r a r y  constant. Note that the generation of the fourth beam will be 

enhanced if ~ is chosen in the vicinity of a sharp atomic resonance 

line (see also section (g) of this chapter), owing to a three-fold res- 

onant denominator in the third-order susceptibility {14,68}. 

Now consider the situation where the phase ~2(x'Y) has a transver- 

se distribution because the signal k 2 has undergone some distortion 

from a plane wave caused by phase aberrations in its passage through an 

inhomogeneous optical medium {66}. The fourth wave will now have its 

phase aberrations corrected in its passage through the same inhomogene- 

ous optical medium. This may be expressed in the following way {54, 

66,67,69,70}: the phase conjugate reflected wave 4 is the time-rever- 

sed replica of wave 2, since: 
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This concept of a phase-conjugate mirror is of considerable technologi- 

cal importance [69,70~, since if the pump field and the non-linearity 

of the medium are sufficiently strong, the output field E4 and signal 

E~ can undergo considerable amplification. Moreover, the conjugate 

mirror may act as a very sharp filter, owing to the behaviour of ~(3) 

in the vicinity of a narrow optical resonance line [54,68]. 

The theory of phase conjugation by stimulated scattering in a 

wave-guide has been derived by Hellwarth [71~. 

(e) REFLECTION AND REFRACTION 

The theoretical analysis of the behaviour of light waves at the 

boundary of a non-linear medium is due to Bloembergen and Pershan [72], 

who obtained the appropriate generalizations of the laws of reflection, 

refraction and Fresnel's equations. In linear optics, the directions 

of the reflected and refracted waves are derived from the condition 

that the tangential component of the wave vector be conserved at the 

boundary between the two media. In the non-linear case, one considers 

e.g. the effect of the generation of second-harmonic radiation 

(we = 2~i) when a wave of angular frequency wl impinges on a non-linear 

surface. The requirement that the tangential components of E and H be 

continuous everywhere on the boundary at all times [7,10,11] imposes 

the condition that the individual frequency components, at el and 2~i, 

be separately continuous across the boundary. With superscripts i, R 

and T denoting the incident, reflected and transmitted waves, respec- 

tively, subscripts 1 and 2 denoting the fundamental and second-harmonic 

fields, and supposing planar boundary to be specified by z = 0 with 

y = 0 denoting the plane of incidence, we have for the fundamental fre- 

quency: 

In the non-linear medium, a non-linear source term [14] (super- 

script S), with wave vector --~2 = 2~Tl will be generated by the funda- 

mental. This in turn means that both a forced polarization wave kS2 

k T will propagate in the second medium, and a free harmonic wave N 2 
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corresponding respectively to the particular solution of the inhomo- 

geneous equation (4.7) and the solution of the corresponding homogen- 

eous equation [14,72]. For the second-harmonic frequency one now has 

the condition: 

= = = (6.11) 

R e l a t i o n s  (6 .10)  and (6.11)  r e f l e c t  the g e n e r a l  r e q u i r e m e n t  o f  c o n s e r -  

v a t i o n  of the tangential component of momentum [54,72], and immediately 

yield the angles of reflection and refraction for the second-harmonic 

waves: 

s i ~  0 ~ .~R _ . ~  -- ~ Sly3 0 ~ 

OT ~T I 0 ~ 

sin @s = ~ s  = I sin ©~ 

(6.12) 

Here we have considered for simplicity the first medium to be vacuum, 

while only one refractive index (for a particular frequency) has been 

assumed for the second medium. The present treatment (which can be 

generalized where necessary to account for more complicated situations) 

is therefore applicable to a cubic crystal (e.g. ZnS), or to a uniaxial 

crystal (e.g. KDP) when the plane of incidence contains the optic axis 

and the incident wave is, e.g. polarized within this plane. Since the 

first medium (here vacuum) is non-dispersive, the reflected second har- 

monic travels in the same direction as the reflected fundamental wave. 

On the other hand, the forced polarization wave kS2 and the free har- 

monic wave kT 2 will in general (as a result of dispersion) propagate in 

somewhat different directions; they will travel parallel in the limi- 

ting cases of exact phase matching, ~(2~) = ~(~), or normal incidence. 

The total harmonic field in the non-linear medium is determined by the 

interference between the free and forced waves, which prevents the 

generation of a significant amount of second-harmonic power in the 

absence of phase matching (see Chapter 4), unless the waves are spati- 

ally separated by the use of oblique angles of incidence [54]. (It is 

of course clear from (6.12) that the forced polarization wave is con- 

fined to those regions of the crystal in which there is fundamental 
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field intensity.) 

For the present situation where the fundamental incident wave is E 

polarized in the plane of incidence, which contains the optic axis of 

the crystal, the transmitted fundamental wave is an extraordinary wave. 

In that case, crystal symmetry requires that the pNL field for the for- 
N 

ced second-harmonic wave, and therefore (from the boundary conditions 

at the interface) E for the free second-harmonic wave be perpendicular 

to the plane of incidence [723. Both of these second-harmonic waves 

therefore propagate as ordinary waves in the second medium. The same 

boundary conditions will be satisfied with E~(2~) perpendicular to the 

plane of incidence as well. 

The various fields can readily be derived from the Maxwell equa- 

tions together with the appropriate boundary conditions, for the spec- 

ial case of second harmonic generation as well as the more general 

situation where two waves of frequencies ~ and ~2, incident from a 

linear medium, impinge on the surface of a non-linear medium, thereby 

generating inter alia free and forced waves at the sum frequency 

~3 = wl+ ~2 [72]. 

The non-linear analogues of the Fresnel formulae [72], the 

Brewster angle [73~ and total internal reflection [72] for the two 

different critical angles predicted by equation (6.12) have been stu- 

died experimentally [73,74]. In all cases, quantitative agreement has 

been obtained with the analysis of Bloembergen and Pershan (72], in a 

manner which serves as a beautiful confirmation of the correctness of 

Maxwell's equations in describing both linear and non-linear optical 

propagation. 

A special case of particular interest in this connection is the 

phenomenon of conical diffraction in second-harmonic generation (75], 

which is the non-linear analogue of a refraction process (conical 

refraction) in biaxial crystals first predicted by Hamilton (76} in 

1833 and observed by Lloyd {77] in the same year. As shown in Chapter 

2, the plane of polarization is arbitrary when wave propagation takes 

place along the optic axis of a biaxial crystal. The Poynting vectors 

belonging to the wave-vector direction exactly parallel to the optic 

axis lie on a cone, with apex angle ~ given by: 

c c with where we have assumed for the principal velocities v i = ~  = ~-~ , 

~i < ~2 < ~s, and the optic axes lie in the xz plane, each making an 

angle: 
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(6.14) 

with the z axis (see Appendix IV). 

In the non-linear case, two types of internal conical refraction 

arise, namely forced and free second-harmonic conical refraction [75, 

78-80]. Firstly, if the fundamental wave vector is parallel to one of 

the fundamental optical axes, both the fundamental and forced second- 

harmonic intensities will be distributed in a conical pattern. If the 

dispersion in the direction of the optic axes is sufficiently large [9] 

the free second-harmonic wave vectors will not contain the direction of 

the second-harmonic optic axis. The energy associated with the free 

wave mode will therefore be refracted in a single spot [80]. 

~f the incident laser beam has a bundle of wave normals that con- 

tain the second-harmonic optic axis, the free wave at 2w gives rise to 

a free second-harmonic conical intensity pattern. Provided that the 

fundamental optic axis is not contained in the wave-normal bundle, the 

fundamental intensity is now confined to a single ray and consequently 

the forced second-harmonic wave gives rise to a forced ray coinciding 

with the fundamental. 

Both of these cases were observed by Schell and Bloembergen [78- 

80], who employed crystals of aragonite (CaCOs) and ~-iodic acid 

(~-HI03), both of which are orthorhombic in structure, but with the 

additional complication in the latter case of natural optical activity 

(optical rotatory power) [17]. Good agreement between measurement and 

theoretical predictions was again obtained. The experimental condi- 

tions which must be fulfilled in order to observe this phenomenon are 

rather stringent [75,78]: 

(l) The diffraction angle of the primary laser beam should be small 

compared with the cone apex ~. This implies that the radius of 

the waist Wo (called the optimum spot size in Chapter 5) of the 

Gaussian beam focussed at the entrance surface of the crystal, and 

the crystal length L, must satisfy the condition: 

A , L  ~ 
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(3) 
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284 

where we have used equations (5.5), (5.9) and Ref. [42], equation 

(4.4). The refractive index ~(~) ~ ~2(w) is an "average" of the 

principal refractive indices. 

The angular dispersion between the optic axes at the fundamental 

and the second-harmonic frequency should be larger than the diff- 

raction angle. 

The thickness of the crystal L should be sufficiently large tO ob- 

tain a dark centre of the base formed by the intersection of the 

cone with the exit surface. This again requires that condition 

(6.15) be fulfilled. 

The coherence length should be smaller than the distance over 

which the forced and free second-harmonic waves overlap. In that 

case, the two harmonic waves have equal intensity {72}. This re- 

quires that the coherence length should be much less than the 

aperture length: 

L <<L 
Cob 

or, from (4.49) and (5.8): 

(Note [75} that for present purposes (biaxial crystals) the apex 

angle ~ in equation (6.13) effectively replaces the aperture 

("walk-off") angle in equation (5.7), used in Chapter 5 in the 

discussion of uniaxial crystals.) 

Some specific numerical examples are discussed in Ref. [75}, nota- 

bly the case of ~-iodic acid (~-HIO3). The non-linear analogue of 

external conical refraction is also discussed in this paper. 

(f) SELF-FOCUSSING 

This phenomenon is found to occur in media (liquids and solids) 

subjected to a laser beam whose intensity exceeds a certain critical 

value: the beam diameter contracts as the electromagnetic wave propa- 

gates through the material, eventually producing a sharply focussed 
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spot which can cause appreciable damage in solids [55,56,81-83]. 

Self-focussing is caused by a field-induced non-linearity in the ref- 

ractive index: 

the possible physical mechanisms to which ~ may be ascribed being 

libration, reorientation and redistribution of the molecules, electro- 

striction, deformation of electronic clouds, and heating [4,55]. 

While the complete solution to the problem is rather complex, a simple 

model for the process may readily be described [55,56]. When a laser 

beam with an initially Gaussian transverse profile enters a medium 

whose refractive index may be described by (6.17), the central part of 

the beam, which encounters a region of higher refractive index, is re- 

tarded relative to the edge, with consequent distortion of the original 

plane wave front. This distortion continues to increase with distance 

travelled in the medium, while the corresponding rays therefore tend to 

contract to a focus. This effect is somewhat offset by the tendency 

of any beam of finite cross-section to diffract, as described in Chap- 

ters 4 and 5, and the final outcome is determined by the competition 

between the two processes {55]. When the effects of self-focussing 

and diffraction exactly cancel, the beam will propagate without any 

change in its transverse profile, a situation known as self-trappinq 

[81}. 
With the use of high-intensity pulsed lasers, two situations 

arise: firstly, if the pulse duration is much longer than the response 

time of ~ (in particular the case of a fast non-linearity), the res- 

ponse of ~ to the laser intensity variation can be considered to be 

instantaneous, i.e. the case of quasi-steady-state self-focussinq [55]. 

Secondly, if the pulse duration is comparable with or shorter than the 

response time of ~, the lagging part of the pulse will encounter a 

variation in refractive index brought about by the passage of the lead- 

ing part. This is the case of transient self-focussing [55]. 

Both quasi-steady-state and transient self-focussing can be des- 

cribed formally by the non-linear wave equation (see (1.17)-(1.19)): 

- U~E + = o (6.18) 

where ~ obeys the appropriate dynamical equation (depending upon the 

physical mechanism responsible for ~). "For example, in liquids with 

strongly anisotropic molecules (Kerr liquids), ~1 induced by a Q-swit- 

ched laser pulse is mainly due to field-induced orientation of mole- 
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cules and hence should obey the Debye relaxation equation" [55]. 

However, a complete and fully rigorous analytical solution to equation 

(6.18) applicable to all cases, cannot readily be derived; a qualita- 

tive discussion of many aspects of self-focussing together with an 

extensive bibliography will be found in Ref. {55]. 

(g) OPTICAL MIXING IN VAPOURS 

Because of inversion symmetry, ~ ~(2) vanishes in a vapour system in 

the electric-dipole approximation [6], and in view of the comparatively 

low atomic density, one would expect that non-linear effects arising 

from~ (3)- would normally not be significant. However, when the opti- 

cal frequencies are close to strong resonances, inequality (6.1) will 

be violated [54] and because of resonant enhancement, ~(3) can become 

so large that the third-order non-linear optical processes in a vapour 

can appear as strong as the second-order processes in a crystal [55]. 

For efficient third-harmonic generation, phase matching is again requi- 

red, and in the present case this may be achieved by introduction of an 

appropriate buffer gas whose density may be treated as a variable [84]. 

A discussion of the limitations on the laser intensity and atomic den- 

sity will be found in the paper by Miles and Harris [84]. Numerous 

other references on this subject are cited by Shen [55]. 

(h) DISPERSIVE OPTICAL BISTABILITY 

In the phenomenon of optical bistability, matter and light are 

coupled together in such a way that phase transitions occur far from 

thermodynamic equilibrium. Initially [85], a Fabry-Perot interfero- 

meter filled with a non-linear vapour (sodium irradiated with light 

from a CW dye laser) was used to demonstrate the effects of hysteresis 

in the curve of transmission versus input intensity, and optical bista- 

bility (dispersive and absorptive). Thereafter, similar observations 

were made by means of etalons containing semiconductor (GaAs and InSb) 

material [86,87] and distributed feedback structures [88]. For a dis- 

cussion of these effects, Refs. [85-89] may be consulted. 
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CHAPTER 7 

SCATTERING BY NON-LINEARMEDIA 

INTRODUCTION 

Ordinary Raman spectroscopy has long been a valuable means of 

studying the vibrational energy levels of molecules and of optical 

branch lattice vibrations in crystals [90,91}. When a parallel beam 

of light with a discrete line spectrum traverses a gas, liquid or tran- 

sparent solid body, and the scattered light (Tyndall effect) is analy- 

sed, it is found to contain primarily the same frequencies as those in 

the incident beam (Rayleigh scattering), but also weaker additional 

lines which do not appear in the spectrum of the light source (Raman 

scatterinq). The frequency shifts (Raman displacements) are found to 

be independent of the frequencies of the exciting lines, but character- 

istic of the scattering substance under consideration. The Raman 

lines displaced towards lower frequencies (relative to the unperturbed 

lines) are called Stokes lines, those displaced towards higher frequen- 

cies called anti-Stokes lines, this nomenclature originating from a law 

for fluorescent light formulated by Sir George Stokes [90,91]. In 

conventional molecular spectroscopy, the intensity of anti-Stokes scat- 

tering is significantly lower than that of Stokes scattering, by the 

Boltzmann factor exp(-h~ol/kT), where ~ol corresponds to the frequency 

of the unperturbed molecular transition between an excited state (i) 

and the ground state (0). In the anti-Stokes case, an incoming photon 

(frequency ~) is scattered by an initially excited molecule, and its 

frequency increased to: 

= ~ + ~ (7.1) 

while the molecule is simultaneously de-excited. In the case of 

Stokes scattering, the incoming photon (frequency ~ >~oi) encounters a 

molecule in its ground state, imparts a fraction of its energy to the 

molecule which is excited in the process, and is scattered with reduced 

frequency: 

~) ~- ~9 -- ~) (7.2) 
$ oj 



288 

Until the advent of the laser (maser), this type of spectroscopy was 

performed with intense incoherent light sources. 

In 1922, Brillouin [92] predicted that a liquid traversed by com- 

pression waves of short wavelength (ultrasound), when irradiated by 

visible light, would give rise to a diffraction phenomenon similar to 

that produced by a ruled grating. A simple model for this process is 

discussed in Chapter 12 of Ref. [13}. Experimental confirmation of 

the idea that ultrasonic pressure waves in an elastic medium could 

simulate the action of a diffraction grating, was produced by Debye and 

Sears [93] who used a high-frequency quartz crystal oscillator 

(iO e -107 Hz) to drive the elastic waves in toluene and carbon tetra- 

chloride, and observed the resultant diffraction of a mercury arc spec- 

trum. Comparison between calculated (from the adiabatic compressibi- 

lity of the fluid) and measured velocity, yielded agreement within a 

few percent, on the basis of an assumed formula: 

s;~ ~ = ~ A / A  (7.~) 

t h  
for the angular deviation of the n order with respect to the central 

image,A being the wavelength of the ultrasound. A more detailed 

study by Lucas and Biquard [94], with a careful theoretical analysis of 

their findings, followed in the same year. A full treatment of the 

diffraction of light by ultrasonic waves on the basis of Maxwell's 

equations was subsequently undertaken by Raman and Nath [95]. A 

r~sum~ of their treatment, together with an extensive bibliography on 

the subject, will be found in Ref. [13}. 

The term Brillouin scattering is now associated with situations 

where a spectrum of thermally excited acoustic waves is present in a 

liquid or crystal, producing partial scattering of an incident light 

beam as a result of an interchange of energy and momentum between the 

incident photons and acoustic phonons [56]. 

(a) STIMULATED RAMAN SCATTERING 

The first reported observation of this phenomenon was made by 

Woodbury and Ng [96}, who noted that a ruby laser switched with a 

nitrobenzene (a Raman-active liquid) Kerr cell, emitted a copious 

amount of light at 7670 ~ in addition to the normal ruby laser light at 

6943 ~. This was shortly thereafter explained by Eckhardt et al. [97} 

who demonstrated that when various Raman-active liquids are placed in- 

side an optical Fabry-Perot cavity and illuminated by light of frequen- 
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cy ~ and intensity greater than a certain threshold, then coherent 

light builds up in the cavity at a frequency ~ which equals ~ minus 

the frequency of a Raman-active vibration [24,98]. It was shown by 

these authors {97] that while negligible resonant absorption at 

takes place, the lasing action is caused by stimulated Raman scatter- 

ing. 

The Raman laser spectra of various liquids and solids are listed 

in Table 5-2 of Ref. {24~. Only the frequencies belonging to the 

sharpest and most intense spontaneous Raman line will be produced in 

the stimulated process, or occasionally two lines belonging to a sym- 

metrical vibration [24,90}. The reason for this is provided by a 

phenomenological theory due to Hellwarth [98~, in which the process of 

stimulated Raman scattering is described in terms of tabulated or 

measurable material parameters, namely ordinary Raman scattering cross- 

sections. According to a simple model [24~, the process with the low- 

est threshold will tend to limit the laser power below higher threshold 

values: further increase in pump power will increase the intensity of 

this Stokes line, but not create other lines of the spontaneous Raman 

spectrum. However, when the Stokes line has attained a sufficient 

intensity, it can in turn create a second Stokes line of the first 

Stokes line, at w L - 2~ V (where w L is the pump frequency, and ~V the 

frequency of the optical phonon or vibrational wave). This process can 

continue, with the production of higher-order Stokes lines at exact 

harmonics of the first vibrational transition, whose existence was re- 

ported in Ref. {97]. 

It might be supposed that these higher-order lines are due to a 

Raman transition, induced by the laser pump at w L, while the molecule 

undergoes a transition with a change of two or more in the vibrational 

quantum number. As explained by Bloembergen [24], this cannot be the 

case in view of the small matrix elements for such transitions and the 

anharmonicity of the vibrational potential energy well [90~ which is 

sufficiently large to ensure, e.g. that the frequency of spontaneous 

Raman emission for the double vibrational quantum transition 

WL-WV(O_~2 ) does not coincide with w L - 2~V(O_÷l). 

(b) STIMULATED RAMAN SCATTERING (THEORY) 

A theoretical description of the process of stimulated Raman sca- 

ttering is provided by the papers of Bloembergen and Shen {24,99,100~ 

and Loudon [i01~. The first two authors base their treatment on a 

model {24] for the (third-order) complex Raman (or Stokes) susceptibi- 
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lity of a molecule exhibiting the Raman effect' ~(3) S" With ~L again 

denoting the laser frequency, and ~V a vibrational resonant frequency 

of the molecular system, one finds that for photon emission (~S) 

exactly at resonance (u S = ~L_ ~V), ~(3)S is negative pure imaginary, 

corresponding to a negative absorption or positive gain at w s, propor- 

tional to the intensity of the laser beam. The non-linear polariza- 

tion for N molecules per unit volume may be written: 

pNL C .c3)( E!a ~o'~ = ~s ~L - ~ 1 E (7 .4 )  s Z s ~ ~- ~s b 

where ~L and ~S denote the electric field-strengths at ~L and u S, res- 

pectively. Similarly, the non-linear polarization at ~L is given by: 

Corresponding to the electromagnetic fields at u S and ~L' one has 

in addition a non-linear polarization at the anti-Stokes frequency 

2~ L- u S, given by: 

( ~  = >< i ~[_ ~ ~ L ~- ~ s  ~ E~ (7 .6 )  

where ~(3) is related to the anti-Stokes susceptibility /~(3) a~/ and the 

Stokes susceptibility~(3) S-" by [24,100]: 

~ =  (;~>~X~ ) ~ (7.7) 
8 

which becomes simply ~(3)* s in the limit of negligible dispersion. An 

important complex symmetry re!ationshi p is derived by Bloembergen and 

Shen [24,1OO]: 

i 

7< :Zo~ = A ( < ~ c % ~  = ~ < ( ~ % ; - ~ , ~ ~ > .  (7.8) 

This is a generalization of equation (3.37). When absorption of ener- 
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gy by the medium must be considered, the susceptibility elements are 

complex quantities; in that case, a permutation of frequencies invol- 

ving a change of sign of the frequency combination near resonance re- 

quires simultaneous complex conjugation of the relevant susceptibility 

elements. (Compare also equation (3.2).) It may be shown [24] that 

(7.8) is tantamount to the requirement that the Raman-type susceptibi- 

lities obey the same Kramers-Kronig relation [10,24] as in the case of 

linear susceptibilities. 

In addition to the resonances described above at w S = e L-~V and 

M a = ~L+~V , one has other non-resonant contributions to the total non- 

linear susceptibility which are non-dispersive in character, and there- 

fore expressible by a purely real tensor quantity ~ (3) With E de- NR" Ha 
noting the electric field-strength at the anti-Stokes frequency w a, one 

has finally the following general expressions for the non-linear polar- 

ization at w s, ~L and w a {24]: 

P = + . ,x  ) ) + (7.9)  
N R  L S O~ ~L Na 

(7.10) 

(7.11) 

(For brevity, we have omitted the superscript 3 on the third-order 

Raman susceptibilities.) 

The following physical interpretation may be given for the various 

terms in (7.9)-(7.11). The imaginary part of the terms with ~(3) S and 

~3) describes the emission of Stokes and anti-Stokes photons resonan- a 
tly in the interaction between the electromagnetic field and the mole- 

cular systems. The real part of ~ 3) and ~3) describes a paramet- 
S a 

ric process, the simultaneous scattering of quanta at w L and WS, and M L 

and M a, respectively. The interference of all these higher scattering 

processes in the homogeneous medium leads to a change in index of re- 

fraction at w s and M a proportional to IELI 2, and at c0~ proportional to 
. . . .  (3) (3)* ½ 

I~SI and to IEal 2. The real part of the terms in (V S V a ) 

corresponds to a scattering process in which two quanta at M L scatter 

into a quantum at M S and one at M a = 2~ L -WS, or in which a pair of 
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quanta at u S and u a combine to yield two quanta at ~L" The interfer- 

ence of all scattering processes in the homogeneous medium leads to a 

parametric generation of w S and ~a by the laser beam, or vice versa 

The imaginary part of the terms in (XS ~) ½ and (TS~a) can be 

described as the interference of two Raman processes operating between 

the same initial and final state, which may either enhance or decrease 

the total transition rate between the vibrational levels. In the for- 

mer case, the generation of ~S and the absorption of u a is enhanced; 

in the latter case the generation of ~S and the absorption of ~a is de- 

creased by the interference. The relative phases of ~L' ~S and ~aE de- 

termine which situation applies: this in fact suggests that a better 

description of these processes would be in terms of coupled coherent 

wave packets of electromagnetic oscillator states [24~. 

The concepts outlined above can now be applied to the description 

of the stimulated Raman effect as a parametric process [99,100]. The 

expressions for pNL(os) and pNL(oa) in equations (7.9) and (7.11) are 

substituted in the differential equations for the corresponding field- 

strengths (cf. (4.7)), here written for simplicity for an isotropic 

medium: 

~s c ~ ~ t as = c a 

Along the lines of analogous coupled amplitude equations in Chapters 4 

and 5, these equations for the field-strengths may first be simplified 

by adopting the slowly varying amplitude and phase approximation. The 

solutions for the Stokes and anti-Stokes intensities are outlined and 

discussed in Refs. {24,99} as a function of the real and imaginary 

parts of the complex Raman susceptibility, and the wave vector (momen- 

tum) mismatch: 

Loudon {i01} considers the process where an incident photon of 

frequency uz is destroyed in a crystai, accompanied by the creation of 

a scattered photon of frequency w2 and an optical phonon (lattice vib- 

ration quantum) of frequency u- The photons wz and ~2 have wave vec- 
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tors ~z and ~2 directed perpendicular to the end mirrors of the laser 

cavity [97]; wave vector conservation requires that the phonon wave 

vector k equal ~l -he- For forward scattering (as considered here), 

where ~z and ~e are collinear, k is of the order of 0 to l0 s cm -I, i.e. 

we are dealing with the creation of long wavelength phonons. The 

dominant scattering interaction [i02] is one in which the photons and 

phonons are coupled indirectly through electron-photon and electron- 

phonon interactions with the electrons in the crystal. 

The theory of stimulated Raman scattering by lattice vibrations is 

developed by Loudon [i01] by analogy with the treatment of spontaneous 

Raman scattering from phonons [102}. It is important to note the re- 

strictions imposed by crystal symmetry in the present case as well. 

Since the transverse (optical) phonons under consideration have the 

same symmetry character as photons, the crystal symmetry restrictions 

are identical to those which apply to collinear three-photon processes 

[i03,104]. An analysis of the phonon modes that satisfy conservation 

of energy and momentum and hence can participate in forward Raman scat- 

tering, requires a detailed knowledge of the phonon dispersion curves 

[iO1,i02~ for the particular crystal. A detailed discussion for the 

case of uniaxial crystals in terms of ordinary and extraordinary elec- 

tromagnetic and lattice waves will be found in'Ref. [iO1], together 

with an analysis of the stimulated Raman scattering threshold. 

(c) HIGHER-ORDER STOKES AND ANTI-STOKES RADIATION 

Already by 1963, power flux densities in excess of i00 megawatts/ 

cm 2 were readily obtainable in the focus of an external laser beam, and 

these giant pulses could be utilised to generate copious Stokes and 

anti-Stokes radiation in various orders, from liquids such as benzene, 

liquid nitrogen, and nitrobenzene [105-107]. By means of a frosted 

glass plate placed immediately behind the Raman cell [97} and imaged on 

the slit of a high-resolution spectrograph, the frequency spectrum 

integrated over all directions could be measured. Several interesting 

features of the Stokes and anti-Stokes lines were noted by Stoicheff 

[106], in particular the widths of the lines as well as the effect on 

the Raman spectra of mixing liquids such as benzene and carbon disul- 

phide. 

The angular dependence of laser-stimulated Raman radiation in cal- 

cite was measured by Chiao and Stoicheff [108]. Four orders of anti- 

Stokes emission were observed in well-defined cones, as well as diffuse 

first-order Stokes emission with cones of absorption in this diffuse 
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radiation, and a well-defined cone of second-order Stokes emission, all 

in the forward direction. Excellent agreement was found between the 

measured and calculated half apex angles of the various cones, on the 

basis of the precisely known refractive index of calcite and the wave 

vector (momentum matching) relations for the laser and the various 

Stokes and anti-Stokes fields {24,108,109}. The calculation of these 

angles is discussed in detail by Bloembergen {24}. 

(d) STIMULATED BRILLOUIN SCATTERING 

As explained above, Brillouin scattering {92} involves a coupling 

between acoustic waves and electromagnetic waves. The effect may be 

described either as the diffraction of a light wave by a variable index 

of refraction grating {13}, set up by the acoustic vibration, or as a 

collision which occurs between an incident light wave (~z, ~z) and an 

acoustic wave (~2, w2) to produce a light wave (~s, us)- The condi- 

tions of conservation of energy and quasi-momentum require: 

(7.15) 

+ 

For acoustical phonons with frequencies below i0 I° Hz, these conditions 

can always be satisfied [24}. Although the momentum q2 can be compar- 

able in magnitude to kz and k2, the acoustical frequency is very small 

compared with the light frequency, and consequently the momentum tri- 

angle corresponding to (7.16) may be considered isosceles, with 

Ikll ~ Iksl. The Brillouin relation [92~ for the angle of scattering 

of the light now follows immediately as: 

where ~ is the angle between the scattered and incident electromagnetic 

wave vectors. 

As written, equation (7.15) represents the absorption of a phonon 

by an electromagnetic wave. It is also possible for a vibrational 

quantum of frequency w2 to be emitted, with the attendant scattering of 

a photon of frequency wz -~2. 

The phenomenon of stimulated Brillouin scattering, in which the 

acoustic wave that scatters the incident light is produced by the opti- 

cal beam itself, was discovered by Chiao, Townes and Stoicheff [iiO~ in 
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1964. In comparing this process with that of stimulated Raman scat- 

tering by lattice vibrations {i01}, it is important to note {24} the 

very different dispersion law for acoustical phonons from that for op- 

tical phonons. 

In this experiment {iiO}, intense radiation from a giant-pulse 

ruby laser was focussed inside a crystal (quartz or sapphire), and the 

radiation scattered in the backward direction detected and resolved 

with the aid of two Fabry-Perot interferometers, whose interferograms 

were compared to distinguish between the ruby radiation and that scat- 

tered directly backward from the sample. The Brillouin scattering 

was found to be very intense, and hence much amplified over that expec- 

ted from normal Brillouin scattering. Excellent agreement was 

obtained between the observed frequency shifts and those calculated 

from the known elastic constants of the particular material, on the 

basis of a model for electrostrictively-driven compressional waves. 

The intense hypersonic waves generated in these crystals were found to 

have frequencies exceeding iO I° Hz {ii0}. 

For a discussion of more recent developments such as phase conju- 

gation in stimulated Brillouin {iii} and stimulated Raman scattering 

{71}, the reader is referred to the review articles, Refs. {54,55,69, 

70}. 

(e) THE RAMAN LASER 

While the inclusion of the rather small non-resonant contributions 

XN R in equations (7.9)-(7.11) is important for certain problems like 

Raman induced Kerr effect spectroscopy (RIKES) {i12), it is often a 

safe procedure to omit them entirely. In that case one has from equa- 

tions (7.9)-(7.14) in the slowly-varying amplitude and phase approxima- 

tion (compare equation (4.11)): 

,:I~ / /~sc  L s 

_ o< ~" (7.18) 
S s 

-- o< ~ (7.19) 



296 

Again, co-linear wave propagation has been assumed, and in addition 

linear attenuation in the medium has been allowed for by writing 

{13,24}: 

= + ~ 
c a S ,S 

(7.20) 

ca c~ c~ 
(7.21) 

with ~S = (Re £S )½, ~a = (Re ea) ½ 

mismatch: 

In cases where the wave vector 

is not small, the terms in (7.18) and (7.19) which couple the Stokes 

and anti-Stokes waves will not contribute significantly to the genera- 

tion of power at the Stokes and anti-Stokes frequencies (compare for 

example equations ((4.16)-(4.18)). Neglecting these terms in this case, 

and making the further assumption that the laser beam intensity is not 

significantly altered as a result of the scattering processes, i.e. 

treating e L as constant, one may integrate (7.18) directly to obtain: 

I LL ° 
S S 

(7.23) 

As before, L is the thickness of the medium in the beam direction. 

Noting {24} that the imaginary part of the complex Raman suscepti- 

bility is negative, one may define the Stokes power gain per unit 

length of the scattering medium as {24,99}: 

2s 

Provided that this quantity exceeds 2~ S, exponential growth of the 

Stokes scattered wave with distance, takes place. This is the basis 

of the Raman laser {112}, which is the most common application of stimu 

lated Raman scattering. It is easily shown that if the scattering 
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occurs from a single vibrational line, then Im ~ a = - ImP< S for the 

anti-Stokes frequency (~a = 2~L- ~S )' so that for anti-Stokes light 

the gain is always negative. It follows from equation (7.19) that anti 

Stokes radiation can be generated once the intensity of the Stokes wave 

has attained a large value, provided that Ak is non-zero. This is, 

however, a parasitic effect which reduces the gain substantially, and 

in conventional Raman laser design, an attempt is usually made to elimi 

nate it. 

The more general cases of Stokes and anti-Stokes wave generation 

in non-colinear wave propagation, are treated in Refs. (24), (99) and 

(109). 

The theory of stimulated Brillouin scattering is not very differ- 

ent from that of stimulated Raman scattering. The relevant equations 

containing ~(3) follow from a wave equation for the sound wave, and 

are difficult to solve except when the sound wave is highly damped. 

In this case, however, the Stokes and anti-Stokes light waves are pro- 

duced by sound waves which move in opposite directions. These two 

waves are related to different normal coordinates of the system, and 

hence the Stokes and anti-Stokes processes are uncoupled. In the case 

of stimulated Raman scattering, however, the Stokes and anti-Stokes 

waves arise from a driven molecular vibration described by a single 

vibrational coordinate, and are coupled except when the anti-Stokes 

wave is suppressed by a phase mismatch. 

(f) CALCULATION OF NON-LINEAR SUSCEPTIBILITIES (Continued) 

In the calculation of third-order non-linear susceptibilities, 

there are two categories which can be labelled as fast and slow, as 

stated in Chapter VI, section (b). Fast non-linearities are related 

to non-resonant electronic motion as described in Chapter 3, and the 

response times are shorter than optical periods. Slow non-linearities 

may be further subdivided into: (i) near-resonant electronic inter- 

actions such as those used in sodium vapour to demonstrate optical 

bistability {85} and four-wave mixing {I13}, and (ii) all interactions, 

whether resonant or not, which are related to nuclear motion. In the 

latter case, the relevant frequency response of the mechanism can range 

from the near-infrared down to virtual frequency independence. In the 

slow non-linearities, someinterchange of energy with the light wave 

takes place and the non-linearity has a finite response time; in the 

case of fast non-linearities, the role of the medium is strictly cata- 

lytic. 
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The treatment of a slow non-linearity depends upon whether one is 

dealing with transitions which are optically allowed (single-photon) or 

optically forbidden (two-photon). In the former case one can use a 

model such as that outlined in Chapter 3, provided it is borne in mind 

that one is infringing on a domain in which a quantum-mechanical treat- 

ment of matter is needed. In the case of optically forbidden transi- 

tions, a different approach is required, since the non-linearity enters 

to lowest order in the interaction. The medium then responds as a 

damped harmonic oscillator to a force that is quadratic in the field. 

The susceptibility is developed as follows {24}. Let x k denote 

a small displacement of a normal coordinate of a molecule from its equi- 

librium position. The polarizability of the molecule is expanded as: 

o< --_ ~ + x 
(7.25) 

where the corresponding induced dipole moment is given by: 

= o< ~ (7.26) 
j ~ J 

The component of the driving force acting on the molecule which corres- 

ponds to Xk, is: 

(7.27) 

and therefore the differential equation obeyed by x k may be written as 

for a damped harmonic oscillator in the form: 

~a Jgr (i) ~ 

(7.28) 

which may be compared with equation (3.14). In equation (7.28), summa- 

tion over repeated indices (ij) is implied. 

There are, in general, many driving terms in the product EiEj, and 

the coordinate responds independently to each of these. The dyadic pro- 

duct of the electric fields may be written as: 
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where K = ~8 ± ~Y and ~ = ~ ± ~y, and the symbols B, Y run over all the 

frequency components of the total electric field. The amplitude Gij 

is then the appropriate dyadic product of the field amplitudes. Simi- 

larly, with: 

= Z < K. x >D 

one has from (7.28)- 

(7.30) 

~- (7.31) 

The non-linear polarization is constructed by summing the second 

term in equation (7.25) over all atoms. In the case of scattering 

from sound waves (Brillouin scattering) , it is more convenient to start 

with x k denoting a collective normal coordinate, which requires suit- 

able generalization {56} of equation (7.28). 

With the effective non-linear polarizability defined as the sum 
(i) 

over coordinates and atoms per unit volume of the eijk term in (7.25), 

one has from equations (7.30) and (7.31): 

_PI{ (7.32) 

where the superscript a is used to denote the atoms. With the G~m 

written as explicit functions of the field amplitudes, equation (6.3) 
?<(3) . 

can be used to generate the coefficients~ £mij. 

t4L 

(7.33) 

The sums in equation (7.32) have been written explicitly in order to 

emphasize the fact that~N~ is a sum of phased structures impressed 
z3 

on the medium by the light fields. When these scatter light waves, the 

process is termed stimulated scatterin@) whereas when the normal co- 

ordinates x k have a random structure arising from thermal or quantum 
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excitation, the process is termed sppntane0us scatterin@. 

The non-linear processes are classified according to the sponta- 

neous processes with which they are associated, and are identified by 

the values of ~ and K that make the resonance denominators in equation 

(7.32) large enough for the effect to be observable. 

In Rayleigh scattering, ~k is zero and the value of K is arbitrary 

insofar as the denominators do not depend upon it. Resonance occurs at 

= O, and therefore the phased arrays in (7.32) are independent of time 

Thus the scattered waves always have the same frequency as the incident 

waves. When K ~ O the susceptibility is in the form of a static Bragg 

grating, which leads to the non-linear process called real-time holo- 

graphy or degenerate four-wave mixing {66,70}. In the case of K = O, 

the susceptibility is independent of space, and describes a non-linear 

index of refraction which gives rise to self-focussing {55,56,81-83}. 

Raman scattering is characterized by a non-zero ~k and arbitrary K. 

In this case ~ ~ mk ~ O, so that the susceptibility is time-dependent. 

The scattered frequencies are shifted by ± ~ from the incident frequen- 

cies. There are two cases that arise within this category, depending 

upon whether the optical frequencies ~, ~ are larger or smaller than 

the phonon frequency mk" In the first case, we have: 

CO -- cO ~ ~-~ ~ CO (7.34) 

which describes coherent Raman scattering. As we have already seen, 

this comprises several possibilities: the frequency of the scattered 

light may be greater (anti-Stokes scattering) or less (Stokes scatter- 

in@) than that of the incident light, and multiple scattering may take 

place (higher-order Stokes and anti-Stokes scattering). These proces- 

ses are also reviewed in Ref. [i12]. 

The case where both frequencies are smaller than ~k leads to a 

resonance condition: 

60 ~- cO ~- ~ ~ cO (7.35) 
P ~ 4 

Then, energy from both light waves is absorbed by the medium, in the 

process known as two-photon absorption {3,24}. A special case of this 

occurs when: 

CO = co ---- cO ~ - ~ - / ~  ( 7 . 3 6 )  
P 
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This two-photon resonance can then be exploited either in the sum pro- 

cess: 

-~ ~- cO = 3 cO (7.37) 

which leads to two-photon resonantly enhanced tripling {l14},or to the 

difference process: 

_~ -- co ~ cO (7.38) 

which gives a two-photon resonant enhancement of real-time holography, 

a subject of current investigation. 

In Brillouin scattering, ~k is non-zero, and ~/IKI must be approxi- 

mately equal to the speed of sound in the medium. After suitable gene- 

ralization of equation (7.28) as in Ref.{56}, an expression is obtained 

for the non-linearity which gives rise to stimulated Brillouin scatter- 

ing, in which the scattered fields are shifted in frequency with respect 

to the incident field, and the shift varies with scattering angle. In 

both Raman and Brillouin scattering processes, where energy is exchanged 

with the medium, the Manley-Rowe relations should be generalized to al- 

low for the coherently driven vibrations in the medium. 

The new developments termed coherent anti-Stokes (CARS) and cohe- 

rent Stokes (CSRS) Raman spectroscopy, are treated in Ref.{ll2}. 

ACKNOWLEDGEMENTS 

One of us (JDH) wishes to thank the librarian-in-charge of the En- 

gineering and Science Library, U.C.T., Miss Ann Borland and her staff, 

for their kind assistance with this project. We are indebted to Miss 

Lesley Jennings of the Physics Department, U.C.T., for her painstaking 

work of typing the manuscript, and to Mrs. Joan Parsons for typing the 

corrections to the first draft. 



302 

APPENDIX I 

MACROSCOPIC AND LOCAL QUADRATIC SUSCEPTIBILITIES 

IN ANISOTROPIC CRYSTALS 

The local field at the site of the i th atom in the unit cell may 

be written {14] as: 

(AI) 

and the polarizations of the i th atom at angular frequency ~s = ~i + ~2 

are related to the local fields at ~z and ~2 by: 

: - E (%5 (A2) 

"9 = d ( ~ ~ ' - ' , , ' - '0" £ ('->,') E"} ,.,>,>. (A3) 

Note that L(iJ), like ~(i), is a 3 x3 matrix. 

From equations (AI) and (A2), it follows that: 

pLm ~r,>p + ~ + = • Y~'>. ht:~>. (P"~J>  
J 

N L (~)~. (A4) 

Now with the definition : 

it follows that: 

• - Z  _ .£ 
j = ,) 

(A6) 
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Now M (ij) in component form would be a 3N × 3N matrix, where N is the 

number o f  a t o m i c  s i t e s  p e r  u n i t  c e l l .  'Ehis " s u p e r m a t r i x "  c l e a r l y  h a s  

an inverse, which enables a new set of 3 x3 matrices R (ij) to be defi- 

ned such t h a t :  

j ~ ,:; - = = 

(A7) 

From equation (A6) one finds, on applying the inverse matrix: 

L L 

On summing over all atoms in the unit cell, one therefore obtains: 

: ~ ~ : " - ~ ~ ( A 9 )  

whence by inspection: 

(AIO) 

and 

We now write the last term in (All), which is the effective macroscopic 

non-linear polarization, in terms of the microscopic non-linear polari- 

zability tensors. Provided that pNL << pL, equations (AI) and (A2) 

yield: 

(AI2) 
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Now, energy considerations require the symmetry of polarizability 

(~(i)) and Lorentz (L) tensors. With T -- transpose, 

equation (AI2) can be written as: 

By means of the transpose of (AT), this can be written as: 

(AI3) 

On combining (AI4) with (All) and (A3), the effective macroscopic non- 

linear polarization is found to be: 

• ' ~  (~;  ~ , , ~ :  

I /o 

This last expression may be put equal to ~(2) 

d e f i n i n g  : 

: E(t01)E(w2), and on 

N'~.~> = ~(~c~ -~ 

one has for the third-rank macroscopic polarizability tensor: 

(AI5) 

(AI6) 

In component form (a b c) , 

~--- /i4e ~ (~ , %) ~,; 

(AI7) 
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~(2) 
NOW it has been shown in the text that the ~i~k satisfy the set of 

permutation symmetry relations {14) : 

(AI8) 

or, in other words, the frequencies may be permuted at will provided 

the Cartesian indices are simultaneously permuted so that a given fre- 

quency is always associated with the same index. Clearly, the macro- 

scopic non-linear susceptibility ~(2) satisfies the same permutation 

symmetry relationships as in (AI8). In addition, ~(2) has the point 

symmetry properties of the crystal lattice as a whole, whereas the in- 

dividual non-linear polarizabilities ~(2) have the symmetry properties 

of the individual lattice sites {14]. N 



306 

APPENDIX II 

CRYSTAL CLASSES EXHIBITING QUADRATIC SUSCEPTIBILITY 

There are seven crystal systems comprising thirty-two crystal 

classes [17), but of these only twenty lack a centre of inversion and 

thus possess quadratic susceptibility. These are listed in order of 

increasing symmetry, and for each class (in the Sch~nfliess description 

(16i) are indicated the non-zero tensor elements [4). The relation- 

ships between the components are stated with the assumption of the 

Kleinman symmetry relation (3.30) in addition to the general symmetry 

relation (3.28). For brevity, non-zero components which may be obtai- 

ned from those already stated merely by permutation of the last two 

indices (as in (3.29)), are omitted. 

i. Triclinic System (Class Ci[ 

The crystals of this class lack symmetry elements, and thus all 

18 (lO independent) tensor elements~ij k are non-zero. 

2. Monoclinic System (Class C2[ 

These crystals have a twofold symmetry axis (z); rotation through 

180 ° about this axis leaves the crystal invariant. The non-zero 

elements are 7113 =~Sll; ~22s =~322; ~123 =7321 =~21s, and 

~333 (4 independent components). 

3. Monoclinic System (Class Cs~ 

These crystals possess a plane of symmetry (xy), reflection in 

which leaves the crystal invariant. The non-zero elements are 

those in which the index 3 appears only in pairs or not at all. 

7111; ~122 =~212; ~133 =7313; ~'112 =~k/211 ; ~><222; 
~<233 =~<S2S (6 independent components). 
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4. Orthorhombic System (Class D2~ 

Crystals of this class have three mutually perpendicular twofold 

axes (x,y,z). Rotation through 180 ° about any of these axes re- 

verses the direction of the two remaining axes. The only non- 

zero components of~ij k are those in which all three indices are 

different. 

~123 =~312 = ~<21s (i independent component) . 

5. 0rthorhombic System (Class Cev ~ 

These crystals have one twofold axis (z) parallel to two planes of 

symmetry, xz and yz. The components of 7must be invariant under 

rotations about the z axis and reflection in the xz and/or yz 

plane. The non-zero components Tij k areTslz =711s; 

7s22 =722s; 7sss (3 independent components). 

6. Tetraqonal System (Class S4~ 

Crystals of this class are invariant under 90 ° rotation about the 

z axis followed by reflection in the xy plane. The non-zero com- 

ponents 7ij k are ~Sl2 =~I2S =72Sl; ~Sll =TlSl = --72me = --732e 
(2 independent components). 

7. Tetraqonal System (Class C4~ 

These crystals are invariant under 90 ° rotations about the four- 

fold z axis. The non-zero elements ~ij k dreams3; 

YSll =TllS =V2es =~s22 (2 independent components). 

8. Tetraqonal System (Class D2d ~ 

This class is characterized by three mutually perpendicular two- 

fold axes (x,y,z) and two planes of symmetry through the z axis 

that bisect the angles between the x and y axes. Thus, in addi- 

tion to the symmetry elements in class D2, the components~ij k 

must also be invariant under permutation of the indices 1 and 2 

(independent of Kleinman symmetry). Therefore the only non-zero 
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components ofYij k areYl2S =721s = 7s21 

nent) . 

(1 independent compo- 

9. Tetraqonal System (Class D4) 

Crystals of this class have a fourfold axis of symmetry (z) and 

four twofold axes in the xy plane. In addition to the symmetry 

elements of class D 2, only 90 ° rotation about the z axis need be 

considered. Because of this transformation the component~sl 2 

must vanish, the Kleinman symmetry condition therefore requiring 

that all components~ijk be zero. Without the Kleinman condition 

one would have~12 s = -~21s- However, the fact that no crystal 

of this class possessing non-linear properties is known, is a 

strong indication of the practical usefulness of Kleinman's con- 

jecture. (0 independent components) 

i0. Tetraqonal System (Class C4v ~ 

Crystals of this class have a fourfold axis of symmetry z parallel 

to four planes of symmetry, one of which is the plane xz. In 

addition to the symmetry elements of class C~, the components must 

be invariant under reflection in these planes. The non-zero com- 

ponents are Ysss; 7s11 =~11s =Ye2s =7s22 (2 independent com- 

ponehts). 

ii. Triqonal or Rhombohedral System (Class Cs~ 

These crystals are invariant under rotations of 120 ° about the 

threefold symmetry axis z. The non-zero components dresses; 

711s =722s =~s11 =~s22; ~111 = -~122 = -~212; 

~211 = --~22~ =~i12 (4 independent components). 

12. Trigonal System (Class Ds~ 

Crystals of this class have a threefold axis of symmetry (z axis) 

and three twofold axes of symmetry in the xy plane, one of the 

latter being the x axis. The non-zero components are 

~iIi = -~le2 = -X212 (i independent component). 
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13. Triqonal System (Class Csv ~ 

These crystals have a threefold symmetry axis z parallel to three 

planes of symmetry, one of these being the plane xz. The non- 

zero components are Tess; ~IIS =~22S = 7ell =VS22; 
~111 = -712a = -~212 (3 independent components). 

14. Hexaqonal System (Class Csh ~ 

Crystals of this class have a threefold axis of symmetry (z) and 

a plane of symmetry (xy). The non-zero components are 

7122 = ~212 = -~iii; ~i~2 = 7211 = -Y222 (2 independent compon- 

ents). 

15. Hexaqonal System (class Dsh I 

These crystals have a threefold axis of symmetry z and three two- 

fold axes, one of which coincides with the x axis, as well as a 

plane of symmetry (xy). The non-zero components are 

7122 = 7212 = -~111 (i independent component). 

16. Hexaqonal System (Class Ce~ 

Crystals of this class are invariant under 60 ° rotations about a 

sixfold symmetry axis (z). The non-zero components are X33s; 

YlIS =7~23----~Sll-----~S22 (2 independent components). 

17. Hexaqonal System (Class De~ 

These crystals have a sixfold symmetry axis (z) and six twofold 

axes lying in the plane xy. As in the case of the class D4, non. 

zero components can only exist in violation of Kleinman's conjec- 

ture. These are712s = -~21s (0 independent components). 

18. Hexaqonal System (Class Csv) 

Crystals of this class have a sixfold symmetry axis (z) parallel 
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to six symmetry planes, one of which is the xz plane. 

zero components are 73ss; ~ii 3 =722s = 7all = ~322 

(2 independent components). 

The non- 

19. Cubic System (Class T) 

These crystals have three orthogonal twofold symmetry axes x,y,z 

and four diagonal threefold axes. The non-zero components are 

7123 =7s12 =~2si (i independent component). 

20. Cubic System (Class Td~ 

In addition to the symmetry elements of class T, crystals of this 

class have six symmetry planes, each of which contains two of the 

four diagonal threefold axes. The non-zero components are the 

same as for class T: ~123 =7312 =7231 (i independent component) 

The above classes are summarized in Table II.l, in which the rea- 

der will also find listed some typical crystals of importance in non- 

linear optics. Crystals with point symmetry D~ and D 6 are forbidden 

by the Kleinman condition [15} from exhibiting second-harmonic genera- 

tion and related effects. 
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APPENDIX llI 

THE MANLEY-ROWE RELATIONS 

Because of their importance in sum- and difference-frequency gene- 

ration in a non-linear medium, the original derivation of the Manley- 

Rowe relations [25,26} is summarized here, with the aim both of clari- 

fying the underlying assumptions upon which they are based and of illu- 

strating the strong analogy that can be drawn between electrical cir- 

cuit theory and laser physics. 

Based upon unpublished work by Manley some twenty years earlier, 

these relations were derived [25] with reference to a hysteresisless 

and loss-free non-linear reactance (specifically a non-linear capaci- 

tor). The characteristic of the non-linear capacitor is given by 

specifying the voltage as some arbitrary function of the charge: 

v = 4~$) (BI) 

where f(q) is assumed to be single-valued. The situation is consider- 

ed where two generators of fundamental (incommensurable) frequencies 

fz = ~i/2z and fo = Wo/2Z are connected to the non-linear capacitor; 

as a result, all of the frequencies: 

will be present in the circuit, where m and n take on all integral 

values, positive, negative and zero. The charge q flowing into the 

non-linear capacitor may be written as the double Fourier series: 

(B2) 

where x = wzt, y = Wo t. Since q is real, 

¢ = (B3) 

The variables x and y are initially considered as independent, taking 

on any values in the xy plane, and are subsequently replaced by the 
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above substitution in terms of angular frequency, so that only values 

along a straight line in the xy plane appear in the final results 

(method of calculating modulation products {27]). The current flow- 

ing into the non-linear capacitor is therefore given by: 

where 

and 

I = ~ " (B6) 

Now 

and since the voltage is now a single-valued function, periodic in x 

and y, it may also be expanded in a double Fourier series: 
i 

v = ~ v ~ p L ~ c ~  + ~ ~ (B8) 

V V ~ (B9) 

where the coefficients are given by: 

O O 

On multiplying both sides of (BIO) by im Qm, n* and summing over the full 

range of m and n, one obtains: 
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O O 

X C,~ 

From the derivative of (B2) with respect to x, and using 

one finds that 

~ • ~o z~ 

"%= -~= %= -~ o o 

S ~_%(a~, 2> - -  , _ ~ '  ag ~:%) d% (BI2) 
o 

%{0, 3 ) 

The limits of the second integral indicate that the variation of q is 

determined by allowing x to vary from O to 2~, holding y constant. 

After a similar analysis with the roles of x and y interchanged, 

the following result is readily obtained: 

k 

~% . . . . . . .  O % (3C~O] 

(BII) 

(B3) and (B5), 

(BI3) 

where the limits of the second integral indicate that the variation of 

q is determined by allowing y to vary from 0 to 2z with x constant. 

While all of the above equations have included both positive and 

negative frequencies, there can be no physical distinction between a 

positive and a negative frequency of the same magnitude. In order to 

relate the quantities V I* to the average powers associated with 
m,n m,n 

the various frequencies, pairs of terms on the left-hand sides of (BI2) 

and (BI3) should be appropriately combined. This is achieved by de- 

fining the time-averaged vector power: 

S = P + X = V I (B14  

in terms of the real (Pm,n) and reactive (Xm, n) powers flowing into the 

non-linear element at a particular frequency. This frequency includes 

both the positive and negative components !Imf I + nfol. Thus with 



315 

5 ~ S ~ (BI5) 

we have 

P V I* " = + V I = P (BI6) 

We note in addition that since q is periodic in both x and y, and 

f(q) is single-valued, the integrals on q on the right-hand sides of 

equations (BI2) and (BI3) must be identically zero for all values of y 

and x, respectively. From (BI2) and (BI3), one therefore has (group- 

ing together corresponding positive and negative frequency components 

and taking care not to count particular contributions twice): 

S wYI ~n 

~q ~i + ~ cOo 

t 

O (BI7) 

(BIB) 

These are the Manley-Rowe relations, which must be satisfied indepen- 

dently by the powers flowing into the non-linear capacitor at the var- 

ious frequencies. A later derivation by the same authors [26] is even 

simpler mathematically than the approach [25] presented above. These 

relations clearly apply equally well in the case of a non-linear in- 

ductor. 

With hysteresis present, corresponding relations may be derived 

provided that there are no departures from the principal single-freq- 

uency hysteresis loop established by the local oscillator (frequency 

fl) alone. Thus, the path traversed in the q-v plane is assumed to 

be, at most, double-valued. Hence, the level of the local oscillator 

at the frequency fl is assumed to be large enough to drive the non- 

linear element well into saturation, so that the q-v characteristic 

will be single-valued over appreciable regions near its ends. The 

signal levels at the other frequencies are assumed to be small compared 

with the local oscillator level. 

With these restrictions in mind, we now return to our original 

analysis, and regard f(q) as a double-valued function of q. In the 

following, the lower branch of this function must be chosen when the 

charge at the local oscillator frequency fl is increasing, the upper 

branch when it is decreasing. Thus with Q1,o = Q-1,o so that both are 
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real (from (B3)) and ~e local oscillator charge at frequency fz a 

cosine function, ~en for O < x < z the upper branch of the q-v charac- 

teristic must be chosen, while for z < x < 2~ the lower branch is sel- 

ected. In (B7), while v is a double-valued function of q, it is a 

single-valued function of x and y, and therefore satisfies the require- 

ment for expansion into a double Fourier series. ~erefore, hystere- 

sis does not alter ~e analysis leading up to (BI2) and (BI3). 

~e integrals on the rift-hand sides of these equations must now 

be re-considered. With y constant in (BI2), q will travel entirely 

around the hysteresis loop as x goes from 0 to 2z, and therefore the 

integral on q yields a constant, independent of y, and equal to the 

area of the hysteresis loop 

~is is also equal to the energy dissipated in ~e non-linear reactor 

in one transit around the hysteresis loop, corresponding to an average 

power dissipation 

? = / { (B2o) 
J 

On the other hand in (BI3), wi~ x constant, q will travel back and 

forth along the same branch of the hysteresis loop, returning to its 

initial value without enclosing any area as y goes from 0 to 2z. 

~us, this integral on q is identically equal to zero for all x, and 

the rift-hand side of (BI3) remains equal to zero, as in the case of 

no hysteresis. Equations (BI2) and (BI3) therefore yield the modified 

Manley-Rowe relations: 

us + ~ ~o ~ (B21) 

In (B21), the hysteresis term may be transferred to the left-hand side 

and combined with ~e local oscillator term Pz,o/~1 to give 

(Pz,o-P)/wz. ~erefore, the only difference from the results for ~e 

hysteresisless case is that the power lost in hysteresis is subtracted 

from the input power from ~e local oscillator. ~us, the power lost 

in hysteresis may be considered to come only from the local oscillator 
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circuit, subject to the restriction that the hysteresis loop is no more 

than double-valued. 

As an example of the foregoing analysis, we consider the simple 

case of non-linear modulators and demodulators in which only one of the 

principal sidebands of the signal about the carrier is allowed to carry 

a significant amount of power {25]. All other sidebands are assumed 

to be reactively terminated. Let fz again denote the local oscillator 

frequency, and f2 a second applied frequency small compared with fl- 

The corresponding sum and difference frequencies are denoted by 

+- -f (B23) 

the plus and minus signs corresponding to the terms non-invertinq modu- 

lator (demodulator) and invertinq modulator (demodulator), respective- 

ly, used in electrical engineering. For modulators the signal input 

is at f2, the signal output at either f+ or f_; for demodulators the 

signal input is at either f+ or f_, the signal output at f2- 

For the non-inverting modulator and demodulator, and assuming that 

the powers at all but the three frequencies shown are equal to zero, 

the Manley-Rowe relations (BI7) and (BI8) yield: 

where PI,P2 and P+ represent the powers flowing into the non-linear 

reactor at frequencies fl,f2 and f+, respectively. For the modulator 

Pz and P2 are positive, representing power flowing into the non-linear 

reactor, while P+ is negative, representing the useful power output of 

the device. For the demodulator, the reverse signs apply to the vari- 

ous powers. 

For the inverting modulator and demodulator, the Manley-Rowe rela- 

tions in turn yield: 

-- ~ -- ~ (B25) 
) 

where P_ represents the power flowing into the non-linear reactor at 

the frequency f_. For both the inverting modulator and demodulator, 

Pz is positive, P2 and P_ negative; the input power from the local 

oscillator at the frequency fl flows out of the non-linear reactor at 

the two signal frequencies f2 and f_. 

Now a striking analogy exists between equations (B24) and (B25) 

and the corresponding relations applicable to sum- and difference- 

frequency generation in a crystal with non-linear susceptibility owing 
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to the interaction of wave fields of frequencies fl and f2- After 

division of the corresponding equations (see Chapter 4) by the reduced 

Planck's constant (~), relations are obtained connecting the changes in 

photon density (photon flux) at the various frequencies. Although the 

interpretation of these relations may then readily be given using the 

photon concept, it is clear from the foregoing that the relations arise 

from the two basic premises, viz. conservation of energy and the non- 

linear response of the medium [26~, and do not have special quantum- 

mechanical significance. 

Consultation of Ref. [9~ will show the analogies between the elec- 

trical circuit theory discussed in this section of the Appendix and 

non-linear optics applications, as listed in Table III.l. 

TABLE III.1 

ELECTRICAL CIRCUIT ANALOGOUS LASER APPLICATION 

non-inverting modulator 

non-inverting demodulator 

inverting modulator 

inverting demodulator 

parametric up-conversion 

parametric down-conversion 

parametric amplification 

parametric oscillation 
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APPENDIX IV 

THE INDEX ELLIPSOID 

Many of the important results for extraordinary wave propagation 

in a uniaxial crystal follow immediately from the properties of the 

index ellipsoid [12,13}, i.e. the polar plot of be(e) as given by equa- 

tion (2.12). In the case of a neqative uniaxial crystal, a plane sec- 

tion through this ellipsoid of revolution which includes the optic axis 

will be an ellipse of semi-major axis ~o and semi-minor axis be; in 

the case of the positive uniaxial crystal, the semi-major axis will be 

be and the semi-minor axis ~o" This is easily seen from consideration 

of the ellipse: 

S 
I (cl) 

where: 

h 
= ~ cos 0 (. 

1 
e being the angle between r and the optic axis. 

N 

(C2) into (cl) yields: 

Substitution from 

(C2) 

oS ~ i~0+ ~os e 

which immediately leads to the identification (from equation (2.12)): 

= / / -%(0) , (c4) 

Next, we show that the outward drawn normal to this ellipsoid of 

revolution at any point (De(e), e) is the ray direction (direction of 

enerqy propaqation) for the particular wave normal at an angle @ to the 

optic axis. Differentiation of (Cl) yields for the slope of the tan- 
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gent to the index ellipsoid: 

mq 

whence the slope of the outward normal at the point 

(c5) 

(~e (e) , e) equals : 

& 

(c 6 ) 

in agreement with equation (2.30). (An elegant proof of this propo- 

sition will be found in the appendix to Ref. [46].) 

Moreover, from (C2)-(C5), it immediately follows that: 

I 
(C7) 

in agreement with equation (2.29). The electric field associated with 

the extraordinary ray is therefore tangential to the index ellipsoid, 
r 

and lies in the plane containing n = ~/r and the optic axis. Its di- 

rection is in the sense of increasing e. Therefore, the unit vectors 

~S-"~-~' "T'~g' "~'-Fg form a right-handed ortbogonal set identical to 

the "usual" spherical polar unit vectors (~r' ~e' ~)" 

The double refraction (aperture or "walk-off") anqle ~ = I@-~I now 

follows from (C3)-(C6): 

.D 
(c8) 

in agreement with equation (2.31). 

Next, we consider the general problem of collinear phase matching 

as discussed in section (f) of Chapter 5. 

Type Ia phase matchinq: 

The two conditions (5.53) and (5.54) yield for this case: 
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Now provided that: 

/o iClO  

phase matching will be achieved for the angle: 

o ---- o~c. Sin 3e io (cll) 

This type of phase matching is therefore suitable in the case of neqa- 

tive uniaxial crystals. 

Type Ib phase matchinq: 

The two conditions (5.53) and (5.54) yield for this case: 

/~3o -- ~0 + ~ I 
(C12) 

The curve described by the right-hand side of (C12) is, however, not in 

general expressible in the form (C3), and the calculation of the phase 

match angle therefore more cumbersome than in the previous case. 

However, provided that: 

i i [/~ + (C13) - 

//~e C0] + CO 

a phase match angle ~o Ib can be obtained from (C12). This type of 

phase matching is therefore suitable in the case of positive uniaxial 

crystals. 

T~pe IIa phase matchinq: 

The two conditions (5.53) and (5.54) yield for this case: 
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3e 601 + 

The solution for the phase match angle is again more cumbersome than 

(Cll). However, provided that: 

C,.) i -#- co& ~o I a~ CO& 3~ 

a solution will exist for 1~o IIa Now clearly in order for (C15) to 

hold in the case of negative uniaxial crystals, one has the necessary 

conditions: 

i) CO ~ CO if 
, ~ ~ ~ ,, /~o~</--3e .> 

ii) //~,o > ? 3e 

Conditions i) and ii) will be seen to hold in the solutions displayed 

in figure 2 of Ref. [52}. 

Type IIb phase matching: 

The two conditions (5.53) and (5.54) yield for this case: 

which again lacks a simple solution of the type (ClI). However, pro- 

vided that: 

+ (clT) 
cO, + GO a / 

a solution will be found for ~o IIb. In order for (C17) to hold in the 

case of positive uniaxial crystals, one has the necessary conditions: 

i) cOa ~/ ~°I ~ ,e 3o 

ii) /~ae>p3 o 

It is clear from a comparison of (clO) with (C15) for the case of 
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negative uniaxial crystals, and (C13) with (C17) in the case of posi- 

tive uniaxial crystals, that for given frequencies ~i and ~2, the phase 

match angle (where it exists) for type II processes is always greater 

than for type I processes, as noted for second harmonic generation by 

Hobden {36}. 

BIAXIAL CRYSTALS 

The Fresnel equation (2.8), with: 

C C %/ n ~--- 

may be re-written as: 

(Cl8) 

where : 

Dr_. _~_ , i t  q (C20) 
d / d 

in terms of the direction cosines (nj) of the wave normal. 

Equation (C19), which applies to the triclinic, monoclinic and 

orthorhombic crystal systems, represents a two-sheeted surface with 

four points of intersection. When joined to the origin, these points 

yield the directions of the optic axes of the biaxial crystal. A cross 

section through the centre, perpendicular to one of the principal axes 

(i.e. a principal section) yields both an ellipse and a circle in each 

case. It is readily shown from (C19) that the principal section xj = O 

consists of the circle= 

as well as the ellipse: 

(C21) 

(C22) 
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For the ordering B1 < ~2 < ~s chosen in the text, the following 

situations will be seen to apply: (a) In the xy plane, the ellipse 

lies within the circle. (b) In the yz plane, the circle lies within 

the ellipse. (c) In the xz plane, the circle and the ellipse inter- 

sect in four points. Opposite points, when connected, describe the 

two (primary) optic axes of the biaxial crystal, which are therefore 

perpendicular to the y axis. 

From equations (C21) and (C22), it is readily found that the optic 

axes are each inclined at an angle: 

(C23) 

to the z axis, in agreement with equation (6.14). For a wave normal 

directed along one of the optic axes, there are therefore two possible 

directions lying in the xz plane, of the corresponding Poynting vector. 

These two ray directions are given by the normal to the circle (C21) 

with j = 2, and the normal to ellipse (C22) with j = 2, calculated at 

one of the points of intersection. By differentiating these two 

equations, one determines the angle ~ between the two ray directions 

(i.e. the angle between the corresponding tangents) to be given by: 

- 

This is the apex angle of the cone of ray directions corresponding to 

wave normals along an optic axis, which characterizes the process of 

internal conical refraction (equation (6.13)). It bears a striking 

resemblance to the double refraction angle (C8) for extraordinary wave 

propagation in a uniaxial crystal. 
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